login
A377430
Numbers k such that there is exactly one squarefree number between prime(k)+1 and prime(k+1)-1.
24
3, 4, 9, 10, 13, 14, 15, 22, 26, 33, 39, 48, 59, 60, 65, 85, 88, 89, 93, 104, 113, 116, 122, 142, 143, 147, 148, 155, 181, 188, 198, 201, 209, 212, 213, 224, 226, 234, 235, 244, 254, 264, 265, 268, 287, 288, 313, 320, 328, 332, 333, 341, 343, 353, 361, 366
OFFSET
1,1
LINKS
EXAMPLE
Primes 4 and 5 are 7 and 11, and the interval (8,9,10) contains only squarefree 10, so 4 is in the sequence.
MAPLE
R:= NULL: count:= 0: q:= 2:
for k from 1 while count < 100 do
p:= q; q:= nextprime(q);
if nops(select(numtheory:-issqrfree, [$p+1 .. q-1]))=1 then
R:= R, k; count:= count+1;
fi
od:
R; # Robert Israel, Nov 29 2024
MATHEMATICA
Select[Range[100], Length[Select[Range[Prime[#]+1, Prime[#+1]-1], SquareFreeQ]]==1&]
PROG
(PARI) is(n, p=prime(n))=my(q=nextprime(p+1), s); for(k=p+1, q-1, if(issquarefree(k) && s++>1, return(0))); s==1 \\ Charles R Greathouse IV, Nov 29 2024
CROSSREFS
For composite instead of squarefree we have A029707.
These are the positions of 1 in A061398, or 2 in A373198.
For no squarefree numbers we have A068360.
For prime-power instead of squarefree we have A377287.
For at least one squarefree number we have A377431.
For perfect-power instead of squarefree we have A377434.
A000040 lists the primes, differences A001223, seconds A036263.
A002808 lists the composites, complement A008578.
A005117 lists the squarefree numbers, complement A013929.
A377038 gives k-differences of squarefree numbers.
Sequence in context: A344292 A356823 A345359 * A287323 A059985 A137709
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 29 2024
STATUS
approved