The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A007674 Numbers m such that m and m+1 are squarefree. (Formerly M1322) 36
 1, 2, 5, 6, 10, 13, 14, 21, 22, 29, 30, 33, 34, 37, 38, 41, 42, 46, 57, 58, 61, 65, 66, 69, 70, 73, 77, 78, 82, 85, 86, 93, 94, 101, 102, 105, 106, 109, 110, 113, 114, 118, 122, 129, 130, 133, 137, 138, 141, 142, 145 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS m and m+1 squarefree implies that m*(m+1) is a squarefree oblong number and that m*(m+1)/2 is a squarefree triangular number. - Daniel Forgues, Aug 18 2012 Numbers m such that A002378(m) is squarefree. - Thomas Ordowski, Sep 01 2015 REFERENCES P. R. Halmos, Problems for Mathematicians Young and Old. Math. Assoc. America, 1991, p. 28. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. D. Noe, Table of n, a(n) for n = 1..1000 L. Carlitz, On a problem in additive arithmetic II, Quarterly Journal of Mathematics 3 (1932), pp. 273-290. Thomas Reuss, Pairs of k-free numbers, consecutive square-full numbers, arXiv:1212.3150 [math.NT], 2012-2014. FORMULA A008966(a(n))*A008966(a(n)+1) = 1. - Reinhard Zumkeller, Dec 03 2009 a(n) ~ k*n, where k = 1/A065474. This result is originally due to Carlitz; for the (current) best error term, see Reuss. - Charles R Greathouse IV, Aug 10 2011, expanded Sep 18 2019 MATHEMATICA ff = {}; gg = {}; Do[kk = FactorInteger[n]; tak = False; Do[If[kk[[m]][[2]] > 1, tak = True], {m, 1, Length[kk]}]; If[tak == False, jj = FactorInteger[n + 1]; tak1 = False; Do[If[jj[[m]][[2]] > 1, tak1 = True], {m, 1, Length[jj]}]; If[tak1 == False, AppendTo[ff, n]]], {n, 1, 500}]; ff (* Artur Jasinski, Jan 28 2010 *) Select[Range[400], SquareFreeQ[#(#+1)]&] (* Vladimir Joseph Stephan Orlovsky, Mar 30 2011 *) PROG (PARI) list(lim)=my(v=vectorsmall(lim\1, i, 1), u=List()); for(n=2, sqrt(lim), forstep(i=n^2, lim, n^2, v[i]=v[i-1]=0)); for(i=1, lim, if(v[i], listput(u, i))); v=0; Vec(u) \\ Charles R Greathouse IV, Aug 10 2011 CROSSREFS Cf. A005117, A013929, A172186, A172187. Sequence in context: A358817 A369166 A369211 * A086719 A115200 A075823 Adjacent sequences: A007671 A007672 A007673 * A007675 A007676 A007677 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Robert G. Wilson v EXTENSIONS Initial 1 added at the suggestion of Zak Seidov, Sep 19 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 23 02:40 EDT 2024. Contains 372758 sequences. (Running on oeis4.)