OFFSET
1,4
COMMENTS
If a(n) = 1, then n is prime and 2^n - 1 is a Mersenne prime. - Franz Vrabec, Sep 27 2005
Using the first variant A007917 (rather than A151799) of the prevprime() function, the sequence is well defined for n = 1, with a(1) = 2^1 - prevprime(2^1) = 2 - 2 = 0. - M. F. Hasler, Sep 09 2015
In Mathematica, one can use NextPrime with a second argument of -1 to obtain the next smaller prime. As almost all the powers of 2 are composite, this produces the proper results for most of this sequence. However, NextPrime[2, -1] returns -2 rather than the expected 2, which would consequently mean a(1) = 4 rather than 0. - Alonso del Arte, Dec 10 2016
LINKS
T. D. Noe, Table of n, a(n) for n = 1..5000 (corrected by Sean A. Irvine, Jan 18 2019)
V. Danilov, Table for large n.
Corbin Simpson, 2^255 - 19 and Elliptic Curve Cryptography (MegaFavNumbers), Youtube video (2020).
FORMULA
a(n) = A049711(2^n). - R. J. Mathar, Nov 28 2016
a(n) = 2^n - prevprime(2^n) = 2^n - prime(primepi(2^n)). - Alonso del Arte, Dec 10 2016
MAPLE
seq(2^i-prevprime(2^i), i=2..100);
MATHEMATICA
{0} ~Join~ Array[With[{c = 2^#}, c - NextPrime[c, -1]] &, 80, 2] (* Harvey P. Dale, Jul 23 2013 *)
Table[2^n - Prime[PrimePi[2^n]], {n, 80}] (* Alonso del Arte, Dec 10 2016 *)
PROG
(PARI) a(n) = 2^n - precprime(2^n); \\ Michel Marcus, Apr 04 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
James Kilfiger (mapdn(AT)csv.warwick.ac.uk)
EXTENSIONS
Extended to a(1) = 0 by M. F. Hasler, Sep 09 2015
STATUS
approved