OFFSET
0,4
COMMENTS
A013597 and A092131 use different definitions of "nextprime(2)", namely A151800 vs A007918: A013597 assumes nextprime(2) = 3 = A151800(2), whereas A092131 assumes nextprime(2) = 2 = A007918(n). [Edited by M. F. Hasler, Sep 09 2015]
If (for n>0) a(n)=1, then n is a power of 2 and 2^n+1 is a Fermat prime. n=1,2,4,8,16 are probably the only indices with this property. - Franz Vrabec, Sep 27 2005
Conjecture: there are no Sierpiński numbers in the sequence. See A076336. - Thomas Ordowski, Aug 13 2017
LINKS
T. D. Noe, Table of n, a(n) for n = 0..5000
V. Danilov, Table for large n
FORMULA
Conjecture: a(n) < n^2/2 for n > 1. - Thomas Ordowski, Aug 13 2017
MATHEMATICA
Table[NextPrime[#] - # &[2^n], {n, 0, 73}] (* Michael De Vlieger, Aug 15 2017 *)
PROG
(PARI) a(n) = nextprime(2^n+1) - 2^n; \\ Michel Marcus, Nov 06 2015
(Python)
from sympy import nextprime
def A013597(n): return nextprime(m:=1<<n)-m # Chai Wah Wu, Dec 02 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
James Kilfiger (mapdn(AT)csv.warwick.ac.uk)
STATUS
approved