login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A014210
Next prime after 2^n.
69
2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031, 2053, 4099, 8209, 16411, 32771, 65537, 131101, 262147, 524309, 1048583, 2097169, 4194319, 8388617, 16777259, 33554467, 67108879, 134217757, 268435459, 536870923, 1073741827, 2147483659
OFFSET
0,1
COMMENTS
Except for a(1) = 3 instead of 2, a(n) is the least prime obtained as a binomial transform of n numbers. E.g. a(5) = (1,5,10,10,5,1).(1,1,1,1,1,6)= 37. - Amarnath Murthy, Nov 26 2003
a(n) is the smallest m for which m>(tau(m))^n, where tau(m) is the number of divisors of m. [Vladimir Shevelev, May 31 2010]
Equivalently, "Smallest prime > 2^n" while in A104080 it is "Smallest prime >= 2^n". The only difference is the 2nd term with a(1) = 3 and A104080(1) = 2. - Bernard Schott, Oct 30 2020
REFERENCES
J.-M. De Koninck & A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 615 pp. 82 and 279, Ellipses, Paris, 2004. Warning : gives Sum_{k>=1} 1/A104080(k) = 0.7404...
LINKS
FORMULA
Sum_{k>=0} 1/a(k) = A338475. - Bernard Schott, Oct 30 2020
MAPLE
[ seq( nextprime( 2^i ), i=0..40) ];
MATHEMATICA
NextPrime[ n_Integer] := (k = n + 1; While[ !PrimeQ[k], k++ ]; k); Table[ NextPrime[2^n], {n, 0, 35} ]
f[n_] := NextPrime[2^n]; Array[f, 30, 0] (* Robert G. Wilson v, Jun 05 2015 *)
NextPrime[2^Range[0, 40]] (* Harvey P. Dale, Jun 22 2017 *)
PROG
(PARI) a(n) = nextprime(2^n+1); \\ Michel Marcus, Oct 30 2020
CROSSREFS
See A203074 for another version.
Sequence in context: A175247 A298598 A079370 * A203074 A014556 A062737
KEYWORD
nonn
AUTHOR
STATUS
approved