

A014210


Next prime after 2^n.


31



2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031, 2053, 4099, 8209, 16411, 32771, 65537, 131101, 262147, 524309, 1048583, 2097169, 4194319, 8388617, 16777259, 33554467, 67108879, 134217757, 268435459, 536870923, 1073741827, 2147483659
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

Except for a(1) = 3 instead of 2, a(n) is the least prime obtained as a binomial transform of n numbers. E.g. a(5) = (1,5,10,10,5,1).(1,1,1,1,1,6)= 37.  Amarnath Murthy, Nov 26 2003
a(n) is the smallest m for which m>(tau(m))^n, where tau(m) is the number of divisors of m. [Vladimir Shevelev, May 31 2010]
Equivalently, "Smallest prime > 2^n" while in A104080 it is "Smallest prime >= 2^n". The only difference is the 2nd term with a(1) = 3 and A104080(1) = 2.  Bernard Schott, Oct 30 2020


REFERENCES

J.M. De Koninck & A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 615 pp. 82 and 279, Ellipses, Paris, 2004. Warning : gives Sum_{k>=1} 1/A104080(k) = 0.7404...


LINKS

Jens Kruse Andersen, Table of n, a(n) for n = 0..1000


FORMULA

Sum_{k>=0} 1/a(k) = A338475.  Bernard Schott, Oct 30 2020


MAPLE

[ seq( nextprime( 2^i ), i=0..40) ];


MATHEMATICA

NextPrime[ n_Integer] := (k = n + 1; While[ !PrimeQ[k], k++ ]; k); Table[ NextPrime[2^n], {n, 0, 35} ]
f[n_] := NextPrime[2^n]; Array[f, 30, 0] (* Robert G. Wilson v, Jun 05 2015 *)
NextPrime[2^Range[0, 40]] (* Harvey P. Dale, Jun 22 2017 *)


PROG

(PARI) a(n) = nextprime(2^n+1); \\ Michel Marcus, Oct 30 2020


CROSSREFS

See A203074 for another version.
Cf. A014211, A054321, A104080, A338475.
Sequence in context: A175247 A298598 A079370 * A203074 A014556 A062737
Adjacent sequences: A014207 A014208 A014209 * A014211 A014212 A014213


KEYWORD

nonn


AUTHOR

N. J. A. Sloane.


STATUS

approved



