Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #40 Aug 07 2022 07:43:06
%S 2,3,5,11,17,37,67,131,257,521,1031,2053,4099,8209,16411,32771,65537,
%T 131101,262147,524309,1048583,2097169,4194319,8388617,16777259,
%U 33554467,67108879,134217757,268435459,536870923,1073741827,2147483659
%N Next prime after 2^n.
%C Except for a(1) = 3 instead of 2, a(n) is the least prime obtained as a binomial transform of n numbers. E.g. a(5) = (1,5,10,10,5,1).(1,1,1,1,1,6)= 37. - _Amarnath Murthy_, Nov 26 2003
%C a(n) is the smallest m for which m>(tau(m))^n, where tau(m) is the number of divisors of m. [_Vladimir Shevelev_, May 31 2010]
%C Equivalently, "Smallest prime > 2^n" while in A104080 it is "Smallest prime >= 2^n". The only difference is the 2nd term with a(1) = 3 and A104080(1) = 2. - _Bernard Schott_, Oct 30 2020
%D J.-M. De Koninck & A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 615 pp. 82 and 279, Ellipses, Paris, 2004. Warning : gives Sum_{k>=1} 1/A104080(k) = 0.7404...
%H Jens Kruse Andersen, <a href="/A014210/b014210.txt">Table of n, a(n) for n = 0..1000</a>
%F Sum_{k>=0} 1/a(k) = A338475. - _Bernard Schott_, Oct 30 2020
%p [ seq( nextprime( 2^i ),i=0..40) ];
%t NextPrime[ n_Integer] := (k = n + 1; While[ !PrimeQ[k], k++ ]; k); Table[ NextPrime[2^n], {n, 0, 35} ]
%t f[n_] := NextPrime[2^n]; Array[f, 30, 0] (* _Robert G. Wilson v_, Jun 05 2015 *)
%t NextPrime[2^Range[0,40]] (* _Harvey P. Dale_, Jun 22 2017 *)
%o (PARI) a(n) = nextprime(2^n+1); \\ _Michel Marcus_, Oct 30 2020
%Y See A203074 for another version.
%Y Cf. A014211, A014234, A054321, A104080, A338475.
%K nonn
%O 0,1
%A _N. J. A. Sloane_.