login
A317937
Numerators of sequence whose Dirichlet convolution with itself yields sequence A001221 (omega n) + A063524 (1, 0, 0, 0, ...).
30
1, 1, 1, 3, 1, 3, 1, 5, 3, 3, 1, 7, 1, 3, 3, 35, 1, 7, 1, 7, 3, 3, 1, 11, 3, 3, 5, 7, 1, 3, 1, 63, 3, 3, 3, 9, 1, 3, 3, 11, 1, 3, 1, 7, 7, 3, 1, 75, 3, 7, 3, 7, 1, 11, 3, 11, 3, 3, 1, 1, 1, 3, 7, 231, 3, 3, 1, 7, 3, 3, 1, 19, 1, 3, 7, 7, 3, 3, 1, 75, 35, 3, 1, 1, 3, 3, 3, 11, 1, 1, 3, 7, 3, 3, 3, 133, 1, 7, 7, 9, 1, 3, 1, 11, 3
OFFSET
1,4
COMMENTS
The first negative term is a(210) = -7.
LINKS
FORMULA
a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A001221(n) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)) for n > 1.
PROG
(PARI)
A317937aux(n) = if(1==n, n, (omega(n)-sumdiv(n, d, if((d>1)&&(d<n), A317937aux(d)*A317937aux(n/d), 0)))/2);
A317937(n) = numerator(A317937aux(n));
(PARI)
\\ DirSqrt(v) finds u such that v = v[1]*dirmul(u, u).
DirSqrt(v)={my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d<n, u[d]*u[n/d], 0)))/2); u}
apply(numerator, DirSqrt(vector(100, n, if(1==n, 1, omega(n))))) \\ Andrew Howroyd, Aug 13 2018
CROSSREFS
Cf. A001221, A063524, A046644 (denominators).
Sequence in context: A193583 A331731 A309891 * A322436 A013603 A157892
KEYWORD
sign,frac
AUTHOR
Antti Karttunen, Aug 12 2018
STATUS
approved