login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A317937 Numerators of sequence whose Dirichlet convolution with itself yields sequence A001221 (omega n) + A063524 (1, 0, 0, 0, ...). 29
1, 1, 1, 3, 1, 3, 1, 5, 3, 3, 1, 7, 1, 3, 3, 35, 1, 7, 1, 7, 3, 3, 1, 11, 3, 3, 5, 7, 1, 3, 1, 63, 3, 3, 3, 9, 1, 3, 3, 11, 1, 3, 1, 7, 7, 3, 1, 75, 3, 7, 3, 7, 1, 11, 3, 11, 3, 3, 1, 1, 1, 3, 7, 231, 3, 3, 1, 7, 3, 3, 1, 19, 1, 3, 7, 7, 3, 3, 1, 75, 35, 3, 1, 1, 3, 3, 3, 11, 1, 1, 3, 7, 3, 3, 3, 133, 1, 7, 7, 9, 1, 3, 1, 11, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

The first negative term is a(210) = -7.

LINKS

Antti Karttunen, Table of n, a(n) for n = 1..65537

FORMULA

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A001221(n) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)) for n > 1.

PROG

(PARI)

A317937aux(n) = if(1==n, n, (omega(n)-sumdiv(n, d, if((d>1)&&(d<n), A317937aux(d)*A317937aux(n/d), 0)))/2);

A317937(n) = numerator(A317937aux(n));

(PARI)

\\ DirSqrt(v) finds u such that v = v[1]*dirmul(u, u).

DirSqrt(v)={my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d<n, u[d]*u[n/d], 0)))/2); u}

apply(numerator, DirSqrt(vector(100, n, if(1==n, 1, omega(n))))) \\ Andrew Howroyd, Aug 13 2018

CROSSREFS

Cf. A001221, A063524, A046644 (denominators).

Cf. also A317831, A317925, A317933, A317845, A317846, A317936, A317938, A317939.

Sequence in context: A193583 A331731 A309891 * A322436 A013603 A157892

Adjacent sequences:  A317934 A317935 A317936 * A317938 A317939 A317940

KEYWORD

sign,frac

AUTHOR

Antti Karttunen, Aug 12 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 21 16:29 EDT 2021. Contains 345365 sequences. (Running on oeis4.)