login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A317936
Numerators of sequence whose Dirichlet convolution with itself yields A100995 + A063524, that is, the characteristic function of A000961 (prime powers).
4
1, 1, 1, 7, 1, -1, 1, 17, 7, -1, 1, -5, 1, -1, -1, 139, 1, -5, 1, -5, -1, -1, 1, -5, 7, -1, 17, -5, 1, 3, 1, 263, -1, -1, -1, -31, 1, -1, -1, -5, 1, 3, 1, -5, -5, -1, 1, 19, 7, -5, -1, -5, 1, -5, -1, -5, -1, -1, 1, 9, 1, -1, -5, 995, -1, 3, 1, -5, -1, 3, 1, -53, 1, -1, -5, -5, -1, 3, 1, 19, 139, -1, 1, 9, -1, -1, -1, -5, 1, 9
OFFSET
1,4
LINKS
FORMULA
a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A100995(n) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)) for n > 1.
PROG
(PARI)
up_to = 65537;
DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d<n, u[d]*u[n/d], 0)))/2); u}; \\ From A317937.
v317936aux = DirSqrt(vector(up_to, n, if(1==n, 1, isprimepower(n))));
A317936(n) = numerator(v317936aux[n]);
for(n=1, up_to, write("b317936.txt", n, " ", A317936(n)));
CROSSREFS
Cf. A000961, A100995, A046644 (denominators).
Cf. also A317939.
Sequence in context: A178637 A364092 A295294 * A277875 A357157 A317935
KEYWORD
sign,frac
AUTHOR
Antti Karttunen, Aug 14 2018
STATUS
approved