OFFSET
1,4
COMMENTS
Calculate matrix powers: (A175992^1)/1 - (A175992^2)/2 + (A175992^3)/3 - (A175992^4)/4 + ... Then the nonzero values of a(n) are found as reciprocals in the first column. Compare this to the Taylor series for log(1+x) = (x)/1 - (x^2)/2 + (x^3)/3 - (x^4)/4 + ... Therefore it is natural to write 0, 1/1, 1/1, 1/2, 1/1, 0, 1/1, 1/3, 1/2, 0, 1/1, ... Raising n to a such power gives A014963. - Mats Granvik, Gary W. Adamson, Apr 04 2011
The Dirichlet series that generates the reciprocals of this sequence is the logarithm of the Riemann zeta function. - Mats Granvik, Gary W. Adamson, Apr 04 2011
Number of automorphisms of the finite field with n elements, or 0 if the field does not exist. For n=p^k where p is a prime and k is integer, the automorphism group of the finite field with n elements is a cyclic group of order k generated by the Frobenius endomorphism. - Yancheng Lu, Jan 11 2021
LINKS
Daniel Forgues, Table of n, a(n) for n = 1..100000
FORMULA
a(n) = Sum_{d|n, gcd(d, n/d) = 1} (-1)^omega(n/d) * bigomega(d). - Ilya Gutkovskiy, Apr 15 2021
MAPLE
f:= proc(n) local F;
F:= ifactors(n)[2];
if nops(F) = 1 then F[1][2]
else 0
fi
end proc:
map(f, [$1..100]); # Robert Israel, Jun 09 2015
MATHEMATICA
ppm[n_]:=If[PrimePowerQ[n], FactorInteger[n][[1, 2]], 0]; Array[ppm, 110] (* Harvey P. Dale, Mar 03 2014 *)
a=Table[Limit[Sum[If[Mod[n, k] == 0, MoebiusMu[n/k]/(n/k)^(s - 1)/(1 - 1/n^(s - 1)), 0], {k, 1, n}], s -> 1], {n, 1, 105}];
Numerator[a]*Denominator[a] (* Mats Granvik, Jun 09 2015 *)
a = FullSimplify[Table[MangoldtLambda[n]/Log[n], {n, 1, 105}]]
Numerator[a]*Denominator[a] (* Mats Granvik, Jun 09 2015 *)
PROG
(PARI) {a(n) = my(t); if( n<1, 0, t = factor(n); if( [1, 2] == matsize(t), t[1, 2], 0))} /* Michael Somos, Aug 15 2012 */
(PARI) {a(n) = my(t); if( n<1, 0, if( t = isprimepower(n), t))} /* Michael Somos, Aug 15 2012 */
(Haskell)
a100995 n = f 0 n where
f e 1 = e
f e x = if r > 0 then 0 else f (e + 1) x'
where (x', r) = divMod x p
p = a020639 n
-- Reinhard Zumkeller, Mar 19 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Nov 26 2004
EXTENSIONS
Edited by Daniel Forgues and N. J. A. Sloane, Aug 18 2009
STATUS
approved