|
|
A100995
|
|
If n is a prime power p^m, m >= 1, then m, otherwise 0.
|
|
28
|
|
|
0, 1, 1, 2, 1, 0, 1, 3, 2, 0, 1, 0, 1, 0, 0, 4, 1, 0, 1, 0, 0, 0, 1, 0, 2, 0, 3, 0, 1, 0, 1, 5, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 6, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 4, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,4
|
|
COMMENTS
|
Calculate matrix powers: (A175992^1)/1-(A175992^2)/2+(A175992^3)/3-(A175992^4)/4+... Then the nonzero values of a(n) are found as reciprocals in the first column. Compare this to the Taylor series for log(1+x)=(x)/1-(x^2)/2+(x^3)/3-(x^4)/4+... Therefore it is natural to write 0, 1/1, 1/1, 1/2, 1/1, 0, 1/1, 1/3, 1/2, 0, 1/1... Raising n to a such power gives A014963. - Mats Granvik, Gary W. Adamson, Apr 04 2011
The Dirichlet series that generates the reciprocals of this sequence is the logarithm of the Riemann zeta function. - Mats Granvik, Gary W. Adamson, Apr 04 2011
Number of automorphisms of the finite field with n elements, or 0 if the field does not exist. for n=p^k where p is a prime and k is integer, the automorphism group of the finite field with n elements is a cyclic group of order k generated by the Frobenius endomorphism. - Yancheng Lu, Jan 11 2021
|
|
LINKS
|
Daniel Forgues, Table of n, a(n) for n=1..100000
|
|
FORMULA
|
A100994(n) = A014963(n)^a(n);
a(A000961(n)) = A025474(n).
|
|
MAPLE
|
f:= proc(n) local F;
F:= ifactors(n)[2];
if nops(F) = 1 then F[1][2]
else 0
fi
end proc:
map(f, [$1..100]); # Robert Israel, Jun 09 2015
|
|
MATHEMATICA
|
ppm[n_]:=If[PrimePowerQ[n], FactorInteger[n][[1, 2]], 0]; Array[ppm, 110] (* Harvey P. Dale, Mar 03 2014 *)
a=Table[Limit[Sum[If[Mod[n, k] == 0, MoebiusMu[n/k]/(n/k)^(s - 1)/(1 - 1/n^(s - 1)), 0], {k, 1, n}], s -> 1], {n, 1, 105}];
Numerator[a]*Denominator[a] (* Mats Granvik, Jun 09 2015 *)
a = FullSimplify[Table[MangoldtLambda[n]/Log[n], {n, 1, 105}]]
Numerator[a]*Denominator[a] (* Mats Granvik, Jun 09 2015 *)
|
|
PROG
|
(PARI) {a(n) = my(t); if( n<1, 0, t = factor(n); if( [1, 2] == matsize(t), t[1, 2], 0))} /* Michael Somos, Aug 15 2012 */
(PARI) {a(n) = my(t); if( n<1, 0, if( t = isprimepower(n), t))} /* Michael Somos, Aug 15 2012 */
(Haskell)
a100995 n = f 0 n where
f e 1 = e
f e x = if r > 0 then 0 else f (e + 1) x'
where (x', r) = divMod x p
p = a020639 n
-- Reinhard Zumkeller, Mar 19 2013
|
|
CROSSREFS
|
Cf. A028233, A069513, A010055.
Sequence in context: A171963 A292131 A255740 * A319273 A329615 A272894
Adjacent sequences: A100992 A100993 A100994 * A100996 A100997 A100998
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Reinhard Zumkeller, Nov 26 2004
|
|
EXTENSIONS
|
Edited by Daniel Forgues and N. J. A. Sloane, Aug 18 2009
|
|
STATUS
|
approved
|
|
|
|