login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319273
Signed sum over the prime multiplicities of n.
3
1, 1, 1, 2, 1, 0, 1, 3, 2, 0, 1, 1, 1, 0, 0, 4, 1, -1, 1, 1, 0, 0, 1, 2, 2, 0, 3, 1, 1, 1, 1, 5, 0, 0, 0, 0, 1, 0, 0, 2, 1, 1, 1, 1, 1, 0, 1, 3, 2, -1, 0, 1, 1, -2, 0, 2, 0, 0, 1, 2, 1, 0, 1, 6, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, -1, 1, 0, 1, 1, 3, 4, 0, 1, 2, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 4, 1, -1, 1, 0, 1, 1, 1, 2, 1
OFFSET
1,4
COMMENTS
If n = Product prime(x_i)^y_i is the prime factorization of n, then a(n) = Sum (-1)^(i-1) y_i.
LINKS
EXAMPLE
The prime factorization of 810 is 2^1 * 3^4 * 5^1, so a(810) = 1 - 4 + 1 = -2.
MATHEMATICA
Table[Total[MapIndexed[(-1)^(#2[[1]]-1)*#1&, Last/@FactorInteger[n]]], {n, 100}]
PROG
(PARI) A319273(n) = if(1==n, n, my(f=factor(n)); sum(i=1, #f~, f[i, 2] * ((-1)^(i-1)))); \\ Antti Karttunen, Sep 30 2018
KEYWORD
sign
AUTHOR
Gus Wiseman, Sep 16 2018
EXTENSIONS
More terms from Antti Karttunen, Sep 30 2018
STATUS
approved