This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A319274 Osiris or Digit re-assembly numbers: numbers that are equal to the sum of permutations of subsamples of their own digits. 1
 132, 264, 396, 8991, 10545, 35964, 255530, 1559844, 9299907, 47755078, 89599104, 167264994, 283797162, 473995260, 3929996070, 6379993620, 10009998999, 11111111110, 22222222220, 33333333330, 44444444440, 55555555550, 66666666660, 77777777770, 88888888880, 99999999990 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS This sequence differs from A241754 because this sequence uses permutations only once. Permutations are of the same length k, leading zeros are allowed. The k's in the sequence are: 2, 2, 2, 3, 3, 3, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 7, 10, 10, 10, 10, 10, 10, 10, 10, 10, 6, 7, 7, 8, 7, 9, 9. LINKS Giovanni Resta, Table of n, a(n) for n = 1..33 (terms < 10^16) EXAMPLE 10545 = 014 + 015 + 041 + 045 + 051 + 054 + 055 + 104 + 105 + 140 + 145 + 150 + 154 + 155 + 401 + 405 + 410 + 415 + 450 + 451 + 455 + 501 + 504 + 505 + 510 + 514 + 515 + 540 + 541 + 545 + 550 + 551 + 554. PROG (Python) import itertools def getData(a, b):     dig = (itertools.permutations(str(a), b))     for d in dig:         yield d for w in range(2, 6):     kk=int(w*'1')     for i in range (kk, 10**(w+3), kk):         m=[]         get = getData(i, w)         while True:             try:                 n = next(get)                 ee=int("".join((n)))                 if ee not in m:                     m.append(ee)             except StopIteration:                 if sum (m)==i and len(m)>1:                       m.sort()                     print (sum(m), len(m), m, i)                 break CROSSREFS Cf. A047726, A179239, A241754, A241899. Sequence in context: A253510 A253503 A195674 * A241754 A063365 A116869 Adjacent sequences:  A319271 A319272 A319273 * A319275 A319276 A319277 KEYWORD base,nonn AUTHOR Pieter Post, Sep 16 2018 EXTENSIONS a(12)-a(26) from Giovanni Resta, Sep 16 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 17 10:52 EDT 2019. Contains 327129 sequences. (Running on oeis4.)