OFFSET
1,1
COMMENTS
Table starts
..132..260...428...636...884..1172...1500...1868...2276...2724...3212...3740
..260..472...784..1196..1712..2340...3088...3964...4976...6132...7440...8908
..428..784..1332..2088..3052..4248...5692...7404...9404..11712..14348..17332
..636.1196..2088..3400..5136..7396..10236..13748..18024..23168..29292..36516
..884.1712..3052..5136..7948.11740..16592..22720..30300..39560..50740..64104
.1172.2340..4248..7396.11740.17888..25988..36632..50248..67508..89120.115940
.1500.3088..5692.10236.16592.25988..38564..55576..77680.106248.142556.188308
.1868.3964..7404.13748.22720.36632..55576..82200.117588.164828.226540.306780
.2276.4976..9404.18024.30300.50248..77680.117588.171236.244528.341444.469544
.2724.6132.11712.23168.39560.67508.106248.164828.244528.356736.507648.712368
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..9378
FORMULA
Empirical for column k:
k=1: a(n) = 20*n^2 + 68*n + 44
k=2: a(n) = (4/3)*n^3 + 36*n^2 + (332/3)*n + 92 for n>2
k=3: a(n) = (10/3)*n^3 + 64*n^2 + (566/3)*n + 92 for n>4
k=4: a(n) = (1/3)*n^4 + 6*n^3 + (329/3)*n^2 + 288*n - 12 for n>6
k=5: a(n) = (5/6)*n^4 + 9*n^3 + (1135/6)*n^2 + 361*n - 300 for n>8
k=6: a(n) = (1/15)*n^5 + (4/3)*n^4 + (37/3)*n^3 + (1004/3)*n^2 + (1238/5)*n - 772 for n>10
k=7: a(n) = (1/6)*n^5 + (11/6)*n^4 + (97/6)*n^3 + (3661/6)*n^2 - (1501/3)*n - 980 for n>12
EXAMPLE
Some solutions for n=4 k=4
..0..1..1..1..1..0....0..1..1..1..1..1....0..1..1..1..1..1....0..1..1..1..1..1
..1..1..1..1..1..0....1..1..1..1..1..1....1..1..1..1..1..1....1..1..1..1..1..1
..1..1..1..1..0..1....1..1..1..1..0..0....1..1..0..0..0..0....1..1..1..1..1..0
..1..1..0..1..0..1....1..1..1..1..1..1....1..1..1..1..1..1....1..1..1..1..0..0
..1..1..0..1..0..1....1..1..0..0..0..0....1..0..0..0..0..0....1..1..1..1..1..1
..1..0..0..1..0..1....1..1..1..1..1..1....0..1..1..1..1..1....0..0..0..0..0..0
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jan 02 2015
STATUS
approved