login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k)=Number of (n+2)X(k+2) 0..1 arrays with every 2X2 and 3X3 subblock diagonal maximum minus antidiagonal minimum nondecreasing horizontally and vertically
9

%I #5 Jan 02 2015 20:09:07

%S 132,260,260,428,472,428,636,784,784,636,884,1196,1332,1196,884,1172,

%T 1712,2088,2088,1712,1172,1500,2340,3052,3400,3052,2340,1500,1868,

%U 3088,4248,5136,5136,4248,3088,1868,2276,3964,5692,7396,7948,7396,5692,3964

%N T(n,k)=Number of (n+2)X(k+2) 0..1 arrays with every 2X2 and 3X3 subblock diagonal maximum minus antidiagonal minimum nondecreasing horizontally and vertically

%C Table starts

%C ..132..260...428...636...884..1172...1500...1868...2276...2724...3212...3740

%C ..260..472...784..1196..1712..2340...3088...3964...4976...6132...7440...8908

%C ..428..784..1332..2088..3052..4248...5692...7404...9404..11712..14348..17332

%C ..636.1196..2088..3400..5136..7396..10236..13748..18024..23168..29292..36516

%C ..884.1712..3052..5136..7948.11740..16592..22720..30300..39560..50740..64104

%C .1172.2340..4248..7396.11740.17888..25988..36632..50248..67508..89120.115940

%C .1500.3088..5692.10236.16592.25988..38564..55576..77680.106248.142556.188308

%C .1868.3964..7404.13748.22720.36632..55576..82200.117588.164828.226540.306780

%C .2276.4976..9404.18024.30300.50248..77680.117588.171236.244528.341444.469544

%C .2724.6132.11712.23168.39560.67508.106248.164828.244528.356736.507648.712368

%H R. H. Hardin, <a href="/A253510/b253510.txt">Table of n, a(n) for n = 1..9378</a>

%F Empirical for column k:

%F k=1: a(n) = 20*n^2 + 68*n + 44

%F k=2: a(n) = (4/3)*n^3 + 36*n^2 + (332/3)*n + 92 for n>2

%F k=3: a(n) = (10/3)*n^3 + 64*n^2 + (566/3)*n + 92 for n>4

%F k=4: a(n) = (1/3)*n^4 + 6*n^3 + (329/3)*n^2 + 288*n - 12 for n>6

%F k=5: a(n) = (5/6)*n^4 + 9*n^3 + (1135/6)*n^2 + 361*n - 300 for n>8

%F k=6: a(n) = (1/15)*n^5 + (4/3)*n^4 + (37/3)*n^3 + (1004/3)*n^2 + (1238/5)*n - 772 for n>10

%F k=7: a(n) = (1/6)*n^5 + (11/6)*n^4 + (97/6)*n^3 + (3661/6)*n^2 - (1501/3)*n - 980 for n>12

%e Some solutions for n=4 k=4

%e ..0..1..1..1..1..0....0..1..1..1..1..1....0..1..1..1..1..1....0..1..1..1..1..1

%e ..1..1..1..1..1..0....1..1..1..1..1..1....1..1..1..1..1..1....1..1..1..1..1..1

%e ..1..1..1..1..0..1....1..1..1..1..0..0....1..1..0..0..0..0....1..1..1..1..1..0

%e ..1..1..0..1..0..1....1..1..1..1..1..1....1..1..1..1..1..1....1..1..1..1..0..0

%e ..1..1..0..1..0..1....1..1..0..0..0..0....1..0..0..0..0..0....1..1..1..1..1..1

%e ..1..0..0..1..0..1....1..1..1..1..1..1....0..1..1..1..1..1....0..0..0..0..0..0

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Jan 02 2015