login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A253512
a(n) = (2^n - 1) * (3^(n+2) - 1) / 2.
1
0, 13, 120, 847, 5460, 33883, 206640, 1249807, 7528620, 45260803, 271831560, 1631788567, 9793126980, 58765944523, 352617206880, 2115767844127, 12694800840540, 76169386305043, 457018061484600, 2742113599608487, 16452697289229300, 98716230809062363
OFFSET
0,2
COMMENTS
In Hurwitz 1902 see page 17 table for n=4 where N is the number of n-sheeted Riemann surfaces with w branch points.
FORMULA
a(n) = 12*a(n-1) - 47*a(n-2) + 72*a(n-3) - 36*a(n-4) for n > 4. - Colin Barker, Jan 09 2015
G.f.: x*(18*x^2-36*x+13) / ((x-1)*(2*x-1)*(3*x-1)*(6*x-1)). - Colin Barker, Jan 09 2015
MATHEMATICA
Table[(2^n -1)*(3^(n+2) -1)/2, {n, 0, 30}] (* G. C. Greubel, Aug 03 2018 *)
LinearRecurrence[{12, -47, 72, -36}, {0, 13, 120, 847}, 30] (* Harvey P. Dale, Feb 17 2023 *)
PROG
(PARI) {a(n) = if( n<0, 0, (2^n - 1) * (3^(n+2) - 1) / 2)};
(Magma) [(2^n -1)*(3^(n+2) -1)/2: n in [0..30]]; // G. C. Greubel, Aug 03 2018
CROSSREFS
Sequence in context: A016285 A121086 A159969 * A295048 A295376 A188709
KEYWORD
nonn,easy
AUTHOR
Michael Somos, Jan 02 2015
STATUS
approved