login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A121086 Number of primitive Pythagorean-like triples a^2+b^2=c^2+k for k=3 with 0<c<=10^n. 2
1, 13, 119, 1219, 12115, 121054, 1210480, 12101765, 121011208 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
LINKS
EXAMPLE
a(1)=1 because there is one solution (a,b,c) as (4,6,7) with 0<c<=10^1.
MATHEMATICA
(* Courtesy of Daniel Lichtblau of Wolfram Research *)
countTriples[m_, k_] := Module[ {c2, c2odd, total = 0, fax, g}, Do[ c2 = c^2 + k; If[c2 < 2, Continue[]]; c2odd = c2; While[EvenQ[c2odd], c2odd /= 2]; If [c2odd==1, If [OddQ[Log[2, c2]], total++ ]; Continue[]]; If[Mod[c2odd, 4] == 3, Continue[]]; g = GCD[c2odd, 100947]; If[g != 1 && g^2 != GCD[c2odd, 10190296809], Continue[]]; fax = Map[{Mod[ #[[1]], 4], #[[2]]}&, FactorInteger[c2odd]]; If[Apply[Or, Map[ #[[1]] == 3 && OddQ[ #[[2]]] &, fax]], Continue []]; fax = Cases[fax, {1, aa_}:>aa+1]; fax = Ceiling[Apply[Times, fax]/2]; total += fax; , {c, m}]; total]
CROSSREFS
Sequence in context: A051824 A367244 A016285 * A159969 A253512 A295048
KEYWORD
more,nonn
AUTHOR
Tito Piezas III, Aug 11 2006
EXTENSIONS
First few terms found by Tito Piezas III, James Waldby (j-waldby(AT)pat7.com)
Subsequent terms found by Andrzej Kozlowski (akoz(AT)mimuw.edu.pl), Daniel Lichtblau (danl(AT)wolfram.com)
a(7) from Max Alekseyev, Jul 04 2011
a(8)-a(9) from Lars Blomberg, Dec 22 2015
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 15 17:30 EDT 2024. Contains 371693 sequences. (Running on oeis4.)