login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A069513
Characteristic function of the prime powers p^k, k >= 1.
29
0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0
OFFSET
1,1
COMMENTS
Also, number of Galois fields of order n. - Charles R Greathouse IV, Mar 12 2008
Also, number of abelian indecomposable groups of order n. - Kevin Lamoreau, Mar 13 2023
LINKS
FORMULA
If n >= 2, a(n) = A010055(n).
a(n) = Sum_{d|n} bigomega(d)*mu(n/d); equivalently, Sum_{d|n} a(d) = bigomega(n); equivalently, Möbius transform of bigomega(n).
Dirichlet g.f.: ppzeta(s). Here ppzeta(s) = Sum_{p prime} Sum_{k>=1} 1/(p^k)^s. Note that ppzeta(s) = Sum_{p prime} 1/(p^s - 1) = Sum_{k>=1} primezeta(k*s). - Franklin T. Adams-Watters, Sep 11 2005
a(n) = floor(1/A001221(n)), for n > 1. - Enrique Pérez Herrero, Jun 01 2011
a(n) = - Sum_{d|n} mu(d)*bigomega(d). - Ridouane Oudra, Oct 29 2024
MAPLE
A069513 := proc(n)
if n = 1 then
0 ;
elif A001221(n) > 1 then
0;
else
1 ;
end if ;
end proc:
seq(A069513(n), n=1..80) ; # R. J. Mathar, Nov 02 2016
MATHEMATICA
A069513[n_]:=Boole[PrimeNu[n]==1]; A069513/@Range[20] (* Enrique Pérez Herrero, May 30 2011 *)
PROG
(PARI) for(n=1, 120, print1(omega(n)==1, ", "))
(Haskell)
a069513 1 = 0
a069513 n = a010055 n -- Reinhard Zumkeller, Mar 19 2013
(Python)
from sympy import primefactors
def A069513(n): return int(len(primefactors(n)) == 1) # Chai Wah Wu, Mar 31 2023
CROSSREFS
The partial sums of this sequence give A025528. - Daniel Forgues, Mar 02 2009
Sequence in context: A189727 A361113 A268411 * A092248 A354920 A106743
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, Apr 15 2002
EXTENSIONS
Moved original definition to formula line. Used comment (that I previously added) as definition. - Daniel Forgues, Mar 08 2009
Edited by Franklin T. Adams-Watters, Nov 02 2009
STATUS
approved