login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A092248
Parity of number of distinct primes dividing n (function omega(n)) parity of A001221.
17
0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1
OFFSET
1,1
COMMENTS
a(p^r) = 1 for all primes p and all exponents r>0. - Tom Edgar, Mar 22 2015
FORMULA
If omega(n) is even then a(n) = 0 else a(n) = 1. By convention, a(1) = 0. (Also because A001221(1) = 0 is an even number too).
a(n) = A000035(A001221(n)). - Michel Marcus, Mar 22 2015
a(n) = A268411(A156552(n)). - Antti Karttunen, May 30 2017
EXAMPLE
For n = 1, 0 primes divide 1 so a(1)=0.
For n = 2, there is 1 distinct prime dividing 2 (itself) so a(2)=1.
For n = 4 = 2^2, there is 1 distinct prime dividing 4 so a(4)=1.
For n = 5, there is 1 distinct prime dividing 5 (itself) so a(5)=1.
For n = 6 = 2*3, there are 2 distinct primes dividing 6 so a(6)=0.
MATHEMATICA
Table[Boole[OddQ[PrimeNu[n]]], {n, 1, 100}] (* Geoffrey Critzer, Feb 16 2015 *)
PROG
(PARI) for (i=1, 200, if(Mod(omega(i), 2)==0, print1(0, ", "), print1(1, ", ")))
(Python)
from sympy import primefactors
def a(n): return 0 if n==1 else 1*(len(primefactors(n))%2==1) # Indranil Ghosh, Jun 01 2017
CROSSREFS
Sequence in context: A361113 A268411 A069513 * A354920 A106743 A284944
KEYWORD
easy,nonn
AUTHOR
Mohammed Bouayoun (mohammed.bouayoun(AT)sanef.com), Feb 19 2004
EXTENSIONS
Offset corrected by Reinhard Zumkeller, Oct 03 2008
STATUS
approved