login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354920
a(n) = A182665(n) mod 2, where A182665(n) is the greatest x < n such that n divides x*(x-1).
5
0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1
OFFSET
1
FORMULA
a(n) = A000035(A182665(n)).
a(n) = A000035(n) XOR A354918(n), where XOR is bitwise-XOR, A003987.
PROG
(PARI) A354920(n) = forstep(x=n-1, 0, -1, if(!((x*(x-1))%n), return(x%2)));
(Python 3.8+)
from itertools import combinations
from math import prod
from sympy import factorint
from sympy.ntheory.modular import crt
def A354920(n):
if n == 1:
return 0
plist = tuple(p**q for p, q in factorint(n).items())
return 1 if len(plist) == 1 else (n-int(min(min(crt((m, n//m), (0, -1))[0], crt((n//m, m), (0, -1))[0]) for m in (prod(d) for l in range(1, len(plist)//2+1) for d in combinations(plist, l))))) & 1 # Chai Wah Wu, Jun 12 2022
CROSSREFS
Parity of A182665. Characteristic function of A354921.
Sequence in context: A268411 A069513 A092248 * A106743 A284944 A284674
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 12 2022
STATUS
approved