login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354918
a(n) = A344005(n) mod 2, where A344005(n) is the smallest positive m such that n divides the oblong number m*(m+1).
6
1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0
OFFSET
1
FORMULA
a(n) = A000035(A344005(n)).
a(n) = A000035(n) XOR A354920(n), where XOR is bitwise-XOR, A003987.
PROG
(PARI) A354918(n) = for(m=1, oo, if((m*(m+1))%n==0, return(m%2)));
(Python 3.8+)
from itertools import combinations
from math import prod
from sympy import factorint
from sympy.ntheory.modular import crt
def A354918(n):
if n == 1:
return 1
plist = tuple(p**q for p, q in factorint(n).items())
return (n-1 if len(plist) == 1 else int(min(min(crt((m, n//m), (0, -1))[0], crt((n//m, m), (0, -1))[0]) for m in (prod(d) for l in range(1, len(plist)//2+1) for d in combinations(plist, l))))) & 1 # Chai Wah Wu, Jun 12 2022
CROSSREFS
Characteristic function of A354919. Parity of A344005.
Cf. A000035, A002378, A003987, A343999 (even bisection), A354920.
Sequence in context: A342025 A353518 A353687 * A354108 A181101 A379274
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 12 2022
STATUS
approved