login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A076259
Gaps between squarefree numbers: a(n) = A005117(n+1) - A005117(n).
110
1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 2, 2, 1, 1, 3, 3, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 4, 2, 2, 2, 1, 1, 2, 1, 3, 1, 1, 2, 1, 1, 2, 1, 3, 1, 1, 3, 1, 2, 1, 1, 2, 2, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 3, 1, 4, 2, 1, 1, 2, 1, 3, 1, 1, 2, 1, 1, 2, 1, 3, 2, 3, 1, 2, 1, 1, 2, 2, 2, 1, 1, 3, 3, 1
OFFSET
1,3
COMMENTS
This sequence is unbounded, as a simple consequence of the Chinese remainder theorem. - Thomas Ordowski, Jul 22 2015
Conjecture: lim sup_{n->oo} a(n)/log(A005117(n)) = 1/2. - Thomas Ordowski, Jul 23 2015 [Note: this conjecture is equivalent to lim sup a(n)/log n = 1/2. - Charles R Greathouse IV, Dec 05 2024]
a(n) = 1 infinitely often since the density of the squarefree numbers, 6/Pi^2, is greater than 1/2. In particular, at least 2 - Pi^2/6 = 35.5...% of the terms are 1. - Charles R Greathouse IV, Jul 23 2015
From Amiram Eldar, Mar 09 2021: (Start)
The asymptotic density of the occurrences of 1 in this sequence is density(A007674)/density(A005117) = A065474/A059956 = 0.530711... (A065469).
The asymptotic density of the occurrences of 2 in this sequence is (density(A069977)-density(A007675))/density(A005117) = (A065474-A206256)/A059956 = 0.324294... (End)
LINKS
Mayank Pandey, Squarefree numbers in short intervals, arXiv preprint, arXiv:2401.13981 [math.NT], 2024.
FORMULA
Asymptotic mean: lim_{n->oo} (1/n) Sum_{k=1..n} a(k) = Pi^2/6 (A013661). - Amiram Eldar, Oct 21 2020
a(n) < n^(1/5) for large enough n by a result of Pandey. (The constant Pi^2/6 can be absorbed by any eta > 0.) - Charles R Greathouse IV, Dec 04 2024
EXAMPLE
As 24 = 3*2^3 and 25 = 5^2, the next squarefree number greater A005117(16) = 23 is A005117(17) = 26, therefore a(16) = 26-23 = 3.
MAPLE
A076259 := proc(n) A005117(n+1)-A005117(n) ; end proc: # R. J. Mathar, Jan 09 2013
MATHEMATICA
Select[Range[200], SquareFreeQ] // Differences (* Jean-François Alcover, Mar 10 2019 *)
PROG
(Haskell)
a076259 n = a076259_list !! (n-1)
a076259_list = zipWith (-) (tail a005117_list) a005117_list
-- Reinhard Zumkeller, Aug 03 2012
(PARI) t=1; for(n=2, 1e3, if(issquarefree(n), print1(n-t", "); t=n)) \\ Charles R Greathouse IV, Jul 23 2015
(Python)
from math import isqrt
from sympy import mobius
def A076259(n):
def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
m, k = n, f(n)
while m != k:
m, k = k, f(k)
r, k = n+1, f(n+1)+1
while r != k:
r, k = k, f(k)+1
return int(r-m) # Chai Wah Wu, Aug 15 2024
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Oct 03 2002
STATUS
approved