|
|
A206256
|
|
Decimal expansion of Product_{p prime} (1 - 3/p^2).
|
|
7
|
|
|
1, 2, 5, 4, 8, 6, 9, 8, 0, 9, 0, 5, 8, 0, 9, 2, 9, 8, 3, 3, 4, 4, 2, 7, 9, 9, 9, 0, 8, 9, 7, 5, 3, 5, 4, 0, 5, 7, 1, 9, 8, 4, 6, 8, 7, 2, 7, 8, 9, 2, 2, 8, 4, 6, 9, 4, 2, 2, 0, 4, 9, 6, 1, 0, 7, 4, 4, 0, 1, 0, 1, 9, 6, 1, 7, 1, 5, 4, 5, 8, 3, 7, 5, 4, 9, 1, 1, 1, 2, 2, 7, 1, 5, 7, 2, 8, 8, 3, 9, 9, 1, 7, 4, 7, 4, 6
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
For a randomly selected number k, this is the probability that k, k+1, k+2 all are squarefree.
|
|
LINKS
|
Table of n, a(n) for n=0..105.
Leon Mirsky, Note on an asymptotic formula connected with r-free integers, The Quarterly Journal of Mathematics, Vol. os-18, No. 1 (1947), pp. 178-182.
Leon Mirsky, Arithmetical pattern problems relating to divisibility by rth powers, Proceedings of the London Mathematical Society, Vol. s2-50, No. 1 (1949), pp. 497-508.
|
|
EXAMPLE
|
0.1254869809058...
|
|
MAPLE
|
# See A175640 using efact := 1-3/p^2. - R. J. Mathar, Mar 22 2012
|
|
MATHEMATICA
|
$MaxExtraPrecision = 500; m = 500; c = LinearRecurrence[{0, 3}, {0, -6}, m]; RealDigits[(1/4) * Exp[NSum[Indexed[c, n]*(PrimeZetaP[n] - 1/2^n)/n, {n, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 100][[1]] (* Amiram Eldar, Oct 01 2019 *)
|
|
PROG
|
(PARI) prodeulerrat(1 - 3/p^2) \\ Amiram Eldar, Mar 16 2021
|
|
CROSSREFS
|
Cf. A059956, A065474, A007675, A335131.
Sequence in context: A060710 A271853 A146101 * A093052 A081556 A187012
Adjacent sequences: A206253 A206254 A206255 * A206257 A206258 A206259
|
|
KEYWORD
|
nonn,cons
|
|
AUTHOR
|
N. J. A. Sloane, Feb 05 2012, based on a posting by Warren Smith to the Math Fun Mailing List, Feb 04 2012
|
|
EXTENSIONS
|
More terms from Amiram Eldar, Oct 01 2019
More terms from Vaclav Kotesovec, Dec 17 2019
|
|
STATUS
|
approved
|
|
|
|