login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A093052
Exponent of 2 in 6^n - 2^n.
3
0, 2, 5, 4, 8, 6, 9, 8, 13, 10, 13, 12, 16, 14, 17, 16, 22, 18, 21, 20, 24, 22, 25, 24, 29, 26, 29, 28, 32, 30, 33, 32, 39, 34, 37, 36, 40, 38, 41, 40, 45, 42, 45, 44, 48, 46, 49, 48, 54, 50, 53, 52, 56, 54, 57, 56, 61, 58, 61, 60, 64, 62, 65, 64, 72, 66, 69, 68, 72
OFFSET
0,2
FORMULA
Recurrence: a(2n) = a(n) + [(n+1)/2] + 1, a(2n+1) = 2n+2.
a(n) = n + A007814(A024023(n)) = n + A090740(n). - Reinhard Zumkeller, Mar 27 2004
MATHEMATICA
Join[{0}, Table[IntegerExponent[6^n-2^n, 2], {n, 70}]] (* Harvey P. Dale, Mar 08 2012 *)
PROG
(PARI) a(n)=if(n<1, 0, if(n%2==0, a(n/2)+2*floor((n+2)/4)+1, n+1))
(Python)
def A093052(n): return n+(~(m:=3**n-1)& m-1).bit_length() if n else 0 # Chai Wah Wu, Jul 07 2022
CROSSREFS
a(n-1) is the exponent of 2 in A009168(n), A012394(n), A088991(n), A009083(n), A012036(n), A012092(n), A012395(n), A012460(n), A012465(n), A012466(n), A012467(n), (A049294(n)-1)/3.
Sequence in context: A271853 A146101 A206256 * A081556 A187012 A134079
KEYWORD
nonn
AUTHOR
Ralf Stephan, Mar 16 2004
STATUS
approved