The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A009083 Expansion of e.g.f. cos(tan(x)^2) (even powers only). 2
 1, 0, -12, -480, -22512, -1224960, -61017792, 1438993920, 1844639547648, 677206700482560, 225542012911531008, 76252348319434383360, 26581103125260630233088, 9309180001030233433374720 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS G. C. Greubel, Table of n, a(n) for n = 0..236 FORMULA a(n) = 2*Sum_{m=0..n} ((-1)^(m)*Sum_{j=4*m..2*n} binomial(j-1,4*m-1)*j!*2^(2*n-j-1)*(-1)^(n+j)*stirling2(2*n,j))/(2*m)!, n>0, a(0)=1. - Vladimir Kruchinin, Jun 11 2011 MATHEMATICA With[{nmax = 60}, CoefficientList[Series[Cos[Tan[x]^2], {x, 0, nmax}], x]*Range[0, nmax]!][[1 ;; -1 ;; 2]] (* G. C. Greubel, Jul 24 2018 *) PROG (Maxima) a(n):=2*sum(((-1)^(m)*sum(binomial(j-1, 4*m-1)*j!*2^(2*n-j-1)*(-1)^(n+j)*stirling2(2*n, j), j, 4*m, 2*n))/(2*m)!, m, 0, n); /* Vladimir Kruchinin, Jun 11 2011 */ (PARI) x='x+O('x^60); v=Vec(serlaplace(cos(tan(x)^2))); vector(#v\2, n, v[2*n-1]) \\ G. C. Greubel, Jul 24 2018 CROSSREFS Sequence in context: A012395 A012687 A012467 * A012681 A009168 A012460 Adjacent sequences: A009080 A009081 A009082 * A009084 A009085 A009086 KEYWORD sign AUTHOR R. H. Hardin EXTENSIONS Extended with signs by Olivier Gérard, Mar 15 1997 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 30 04:46 EDT 2024. Contains 372958 sequences. (Running on oeis4.)