login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A090740 Exponent of 2 in 3^n - 1. 11
1, 3, 1, 4, 1, 3, 1, 5, 1, 3, 1, 4, 1, 3, 1, 6, 1, 3, 1, 4, 1, 3, 1, 5, 1, 3, 1, 4, 1, 3, 1, 7, 1, 3, 1, 4, 1, 3, 1, 5, 1, 3, 1, 4, 1, 3, 1, 6, 1, 3, 1, 4, 1, 3, 1, 5, 1, 3, 1, 4, 1, 3, 1, 8, 1, 3, 1, 4, 1, 3, 1, 5, 1, 3, 1, 4, 1, 3, 1, 6, 1, 3, 1, 4, 1, 3, 1, 5, 1, 3, 1, 4, 1, 3, 1, 7, 1, 3, 1, 4, 1, 3, 1, 5, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Also the 2-adic order of Fibonacci(3n) [Lengyel]. - R. J. Mathar, Nov 05 2008
LINKS
T. Lengyel, The order of the Fibonacci and Lucas numbers, Fib. Quart. 33 (1995), 234-239.
Diego Marques and Pavel Trojovský, The p-adic order of some fibonomial coefficients, J. Int. Seq. 18 (2015), Article 15.3.1, proposition 7.
FORMULA
a(n) = A007814(n) + A059841(n) + 1.
Multiplicative with a(p^e) = e+2 if p = 2; 1 if p > 2. G.f.: A(x) = 1/(1-x^2) + Sum_{k>=0} x^(2^k)/(1-x^(2^k)). - Vladeta Jovovic, Jan 19 2004
G.f.: Sum_{k>=0} t*(1+2*t+t^2+t^3)/(1-t^4) with t=x^2^k. Recurrence: a(2n) = a(n) + 1 + [n odd], a(2n+1) = 1. - Ralf Stephan, Jan 23 2004
G.f. A(x) satisfies A(x) = A(x^2) + x/(1-x) + x^2/(1-x^4). - Robert Israel, Dec 28 2015
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 5/2. - Amiram Eldar, Nov 28 2022
Dirichlet g.f.: zeta(s)*(2^s+1-1/2^s)/(2^s-1). - Amiram Eldar, Jan 04 2023
EXAMPLE
n=2: 3^2 - 1 = 8 = 2^3 so a(2)=3.
MAPLE
seq(padic:-ordp(3^n-1, 2), n=1..100); # Robert Israel, Dec 28 2015
MATHEMATICA
Table[Part[Flatten[FactorInteger[ -1+3^n]], 2], {n, 1, 70}]
IntegerExponent[#, 2]&/@(3^Range[110]-1) (* Harvey P. Dale, Jan 28 2017 *)
PROG
(PARI) a(n)=if(n<1, 0, if(n%2==0, a(n/2)+1+(n/2)%2, 1)) /* Ralf Stephan, Jan 23 2004 */
(PARI) a(n)=valuation(fibonacci(3*n), 2); \\ Joerg Arndt, Oct 28 2012
(PARI) a(n)=my(t=valuation(n, 2)); if(t, t+2, 1) \\ Charles R Greathouse IV, Mar 14 2014
(Python)
def A090740(n): return (n&-n).bit_length()+int(not n&1) # Chai Wah Wu, Jul 11 2022
CROSSREFS
Sequence in context: A004592 A116992 A233267 * A094603 A165595 A213181
KEYWORD
nonn,mult,easy
AUTHOR
Labos Elemer and Ralf Stephan, Jan 19 2004
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 00:23 EST 2023. Contains 367565 sequences. (Running on oeis4.)