The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A090740 Exponent of 2 in 3^n - 1. 11
 1, 3, 1, 4, 1, 3, 1, 5, 1, 3, 1, 4, 1, 3, 1, 6, 1, 3, 1, 4, 1, 3, 1, 5, 1, 3, 1, 4, 1, 3, 1, 7, 1, 3, 1, 4, 1, 3, 1, 5, 1, 3, 1, 4, 1, 3, 1, 6, 1, 3, 1, 4, 1, 3, 1, 5, 1, 3, 1, 4, 1, 3, 1, 8, 1, 3, 1, 4, 1, 3, 1, 5, 1, 3, 1, 4, 1, 3, 1, 6, 1, 3, 1, 4, 1, 3, 1, 5, 1, 3, 1, 4, 1, 3, 1, 7, 1, 3, 1, 4, 1, 3, 1, 5, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Also the 2-adic order of Fibonacci(3n) [Lengyel]. - R. J. Mathar, Nov 05 2008 LINKS Robert Israel, Table of n, a(n) for n = 1..10000 T. Lengyel, The order of the Fibonacci and Lucas numbers, Fib. Quart. 33 (1995), 234-239. Diego Marques and Pavel Trojovský, The p-adic order of some fibonomial coefficients, J. Int. Seq. 18 (2015), Article 15.3.1, proposition 7. FORMULA a(n) = A007814(n) + A059841(n) + 1. Multiplicative with a(p^e) = e+2 if p = 2; 1 if p > 2. G.f.: A(x) = 1/(1-x^2) + Sum_{k>=0} x^(2^k)/(1-x^(2^k)). - Vladeta Jovovic, Jan 19 2004 G.f.: Sum_{k>=0} t*(1+2*t+t^2+t^3)/(1-t^4) with t=x^2^k. Recurrence: a(2n) = a(n) + 1 + [n odd], a(2n+1) = 1. - Ralf Stephan, Jan 23 2004 G.f. A(x) satisfies A(x) = A(x^2) + x/(1-x) + x^2/(1-x^4). - Robert Israel, Dec 28 2015 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 5/2. - Amiram Eldar, Nov 28 2022 Dirichlet g.f.: zeta(s)*(2^s+1-1/2^s)/(2^s-1). - Amiram Eldar, Jan 04 2023 EXAMPLE n=2: 3^2 - 1 = 8 = 2^3 so a(2)=3. MAPLE seq(padic:-ordp(3^n-1, 2), n=1..100); # Robert Israel, Dec 28 2015 MATHEMATICA Table[Part[Flatten[FactorInteger[ -1+3^n]], 2], {n, 1, 70}] IntegerExponent[#, 2]&/@(3^Range[110]-1) (* Harvey P. Dale, Jan 28 2017 *) PROG (PARI) a(n)=if(n<1, 0, if(n%2==0, a(n/2)+1+(n/2)%2, 1)) /* Ralf Stephan, Jan 23 2004 */ (PARI) a(n)=valuation(fibonacci(3*n), 2); \\ Joerg Arndt, Oct 28 2012 (PARI) a(n)=my(t=valuation(n, 2)); if(t, t+2, 1) \\ Charles R Greathouse IV, Mar 14 2014 (Python) def A090740(n): return (n&-n).bit_length()+int(not n&1) # Chai Wah Wu, Jul 11 2022 CROSSREFS Cf. A069895, A091512, A088660, A090739, A001511. Cf. A007814, A014445, A059841. Sequence in context: A004592 A116992 A233267 * A094603 A165595 A213181 Adjacent sequences: A090737 A090738 A090739 * A090741 A090742 A090743 KEYWORD nonn,mult,easy AUTHOR Labos Elemer and Ralf Stephan, Jan 19 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 00:23 EST 2023. Contains 367565 sequences. (Running on oeis4.)