login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A088660
A logarithmic scale Sierpinski self-similar sequence.
4
7, 8, 6, 7, 6, 8, 5, 6, 5, 7, 5, 6, 5, 8, 4, 5, 4, 6, 4, 5, 4, 7, 4, 5, 4, 6, 4, 5, 4, 8, 3, 4, 3, 5, 3, 4, 3, 6, 3, 4, 3, 5, 3, 4, 3, 7, 3, 4, 3, 5, 3, 4, 3, 6, 3, 4, 3, 5, 3, 4, 3, 8, 2, 3, 2, 4, 2, 3, 2, 5, 2, 3, 2, 4, 2, 3, 2, 6, 2, 3, 2, 4, 2, 3, 2, 5, 2, 3, 2, 4, 2, 3, 2, 7, 2, 3, 2, 4, 2, 3, 2, 5, 2, 3, 2
OFFSET
3,1
LINKS
FORMULA
With p(n, k) = log(n!) / log((n-floor(n/2^k))!) then a(n) = Sum_{k=1..8} floor(p(n, k)/p(n-1, k)) for n>2.
MATHEMATICA
p[n_, k_]:= Sum[Log[i], {i, 1, n}]/Sum[Log[i], {i, 1, n-Floor[n/2^k]}]; f[n_]=Sum[Floor[p[n, k]/p[n-1, k]], {k, 1, 8}]; Table[f[n], {n, 3, 100}]
CROSSREFS
Cf. A088487 (self-similar Sierpinski type chaotic sequence with rate three at eight levels), A088488 (self-similar Cantor type sequence with eight levels).
Sequence in context: A333566 A093827 A245736 * A244263 A288023 A020506
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Nov 21 2003
STATUS
approved