OFFSET
0,2
FORMULA
G.f.: (1-2z+4z^3)/[2z^2*(1-2z)sqrt(1-4z^2)]-1/(2z^2).
a(2n) = (2n)!(2n^2+4n+1)/[n!(n+1)!], a(2n+1) = 2(2n+1)!/(n!)^2.
a(2n+1) = 2*A002457(n).
a(n) = (n!/4)*((1+(-1)^n)*(n^2+4*n+2)/((n/2)!*(n/2+1)!)+4*(1-(-1)^n)/(n/2-1/2)!^2). - Wesley Ivan Hurt, Jun 23 2015
D-finite with recurrence -(n+2)*(35*n-41)*a(n) -4*(n+1)*(n-9)*a(n-1) +4*(35*n^2+31*n-41)*a(n-2) +8*(2*n+23)*(n-2)*a(n-3)=0. - R. J. Mathar, Jul 24 2022
MAPLE
A088662:=n->(n!/4)*((1+(-1)^n)*(n^2+4*n+2)/((n/2)!*(n/2+1)!)+4*(1-(-1)^n)/(n/2-1/2)!^2): seq(A088662(n), n=0..40); # Wesley Ivan Hurt, Jun 23 2015
MATHEMATICA
Table[(n!/4) ((1 + (-1)^n) (n^2 + 4 n + 2)/((n/2)! (n/2 + 1)!) + 4 (1 - (-1)^n)/(n/2 - 1/2)!^2), {n, 0, 40}] (* Wesley Ivan Hurt, Jun 23 2015 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Nov 21 2003
STATUS
approved