login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A088662
Number of peaks at even level in all symmetric Dyck paths of semilength n+2.
1
1, 2, 7, 12, 34, 60, 155, 280, 686, 1260, 2982, 5544, 12804, 24024, 54483, 102960, 230230, 437580, 967538, 1847560, 4047836, 7759752, 16871582, 32449872, 70100044, 135207800, 290473900, 561632400, 1200823560, 2326762800
OFFSET
0,2
FORMULA
G.f.: (1-2z+4z^3)/[2z^2*(1-2z)sqrt(1-4z^2)]-1/(2z^2).
a(2n) = (2n)!(2n^2+4n+1)/[n!(n+1)!], a(2n+1) = 2(2n+1)!/(n!)^2.
a(2n+1) = 2*A002457(n).
a(n) = (n!/4)*((1+(-1)^n)*(n^2+4*n+2)/((n/2)!*(n/2+1)!)+4*(1-(-1)^n)/(n/2-1/2)!^2). - Wesley Ivan Hurt, Jun 23 2015
D-finite with recurrence -(n+2)*(35*n-41)*a(n) -4*(n+1)*(n-9)*a(n-1) +4*(35*n^2+31*n-41)*a(n-2) +8*(2*n+23)*(n-2)*a(n-3)=0. - R. J. Mathar, Jul 24 2022
MAPLE
A088662:=n->(n!/4)*((1+(-1)^n)*(n^2+4*n+2)/((n/2)!*(n/2+1)!)+4*(1-(-1)^n)/(n/2-1/2)!^2): seq(A088662(n), n=0..40); # Wesley Ivan Hurt, Jun 23 2015
MATHEMATICA
Table[(n!/4) ((1 + (-1)^n) (n^2 + 4 n + 2)/((n/2)! (n/2 + 1)!) + 4 (1 - (-1)^n)/(n/2 - 1/2)!^2), {n, 0, 40}] (* Wesley Ivan Hurt, Jun 23 2015 *)
CROSSREFS
Cf. A002457.
Sequence in context: A308706 A059053 A032025 * A073710 A326026 A092831
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Nov 21 2003
STATUS
approved