OFFSET
0,2
COMMENTS
First differences consist of duplicated terms: {1, 1, 5, 5, 23, 23, 75, 75, 242, 242, 666, 666, 1798, 1798, ...}; the convolution of these first differences results in: {1, 2, 11, 20, 81, 142, 451, 760, 2143, 3526, 8965, ...}, which in turn has first differences that consist of duplicated terms: {1, 1, 9, 9, 61, 61, 309, 309, ...}.
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
FORMULA
Let f(x) = sum_{n=0..inf} A073709(n) x^n, then f(x) satisfies f(x)^2 = sum_{n=0..inf} a(n) x^n, as well as the functional equation f(x^2)^2 = (1 - x)*f(x).
EXAMPLE
(1 +x +3x^2 +3x^3 +10x^4 +10x^5 +22x^6 +22x^7 +57x^8 +57x^9 +...)^2 = (1 +2x +7x^2 +12x^3 +35x^4 +58x^5 +133x^6 +208x^7 +450x^8 +...) and the first differences of the unique terms {1,3,10,22,57,...} is {1,2,7,12,35,...}.
MATHEMATICA
PROG
(Haskell)
a073710 n = a073710_list !! n
a073710_list = conv a073709_list [] where
conv (v:vs) ws = (sum $ zipWith (*) ws' $ reverse ws') : conv vs ws'
where ws' = v : ws
-- Reinhard Zumkeller, Jun 13 2013
CROSSREFS
KEYWORD
easy,nice,nonn
AUTHOR
Paul D. Hanna, Aug 05 2002
STATUS
approved