login
A055257
Sums of two powers of 6.
5
2, 7, 12, 37, 42, 72, 217, 222, 252, 432, 1297, 1302, 1332, 1512, 2592, 7777, 7782, 7812, 7992, 9072, 15552, 46657, 46662, 46692, 46872, 47952, 54432, 93312, 279937, 279942, 279972, 280152, 281232, 287712, 326592, 559872, 1679617, 1679622, 1679652, 1679832
OFFSET
0,1
FORMULA
a(n) = 6^(n-trinv(n))+6^trinv(n), where trinv(n) = floor((1+sqrt(1+8*n))/2) = A002262(n) and n-trinv(n) = A003056(n)
Regarded as a triangle T(n, k) = 6^n + 6^k, so as a sequence a(n) = 6^A002262(n) + 6^A003056(n).
MATHEMATICA
t = 6^Range[0, 9]; Select[Union[Flatten[Table[i + j, {i, t}, {j, t}]]], # <= t[[-1]] + 1 &] (* T. D. Noe, Oct 09 2011 *)
CROSSREFS
Cf. A052216.
Sequence in context: A073710 A326026 A092831 * A238366 A084068 A192772
KEYWORD
easy,nonn,tabl
AUTHOR
Henry Bottomley, Jun 22 2000
STATUS
approved