The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A084068 a(1) = 1, a(2) = 2; a(2*k) = 2*a(2*k-1) - a(2*k-2), a(2*k+1) = 4*a(2*k) - a(2*k-1). 18
 1, 2, 7, 12, 41, 70, 239, 408, 1393, 2378, 8119, 13860, 47321, 80782, 275807, 470832, 1607521, 2744210, 9369319, 15994428, 54608393, 93222358, 318281039, 543339720, 1855077841, 3166815962, 10812186007, 18457556052, 63018038201, 107578520350 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The upper principal and intermediate convergents to 2^(1/2), beginning with 2/1, 3/2, 10/7, 17/12, 58/41, form a strictly decreasing sequence; essentially, numerators=A143609 and denominators=A084068. - Clark Kimberling, Aug 27 2008 From Peter Bala, Mar 23 2018: (Start) Define a binary operation o on the real numbers by x o y = x*sqrt(1 + y^2) + y*sqrt(1 + x^2). The operation o is commutative and associative with identity 0. We have a(2*n + 1) = 1 o 1 o ... o 1 (2*n + 1 terms) and a(2*n) = (1/sqrt(2))*(1 o 1 o ... o 1) (2*n terms). Cf. A049629, A108412 and A143608. This is a fourth-order divisibility sequence. Indeed, a(2*n) = U(2*n)/sqrt(2) and a(2*n+1) = U(2*n+1), where U(n) is the Lehmer sequence [Lehmer, 1930] defined by the recurrence U(n) = 2*sqrt(2)*U(n-1) - U(n-2) with U(0) = 0 and U(1) = 1. The solution to the recurrence is U(n) = (1/2)*( (sqrt(2) + 1)^n - (sqrt(2) - 1)^n ). It appears that this sequence consists of those numbers m such that 2*m^2 = floor( m*sqrt(2) * ceiling(m*sqrt(2)) ). Cf. A084069. (End) Conjecture: a(n) is the earliest occurrence of n in A348295, which is to say, a(n) is the least m such that Sum_{k=1..m} (-1)^(floor(k*(sqrt(2)-1))) = Sum_{k=1..m} (-1)^A097508(k) = n. This has been confirmed for the first 32 terms by Chai Wah Wu, Oct 21 2021. - Jianing Song, Jul 16 2022 REFERENCES Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966. LINKS Indranil Ghosh, Table of n, a(n) for n = 1..2608 Clark Kimberling, Best lower and upper approximates to irrational numbers, Elemente der Mathematik, 52 (1997) 122-126. D. H. Lehmer, An extended theory of Lucas' functions, Annals of Mathematics, Second Series, Vol. 31, No. 3 (Jul., 1930), pp. 419-448. E. W. Weisstein, MathWorld: Lehmer Number Index entries for linear recurrences with constant coefficients, signature (0,6,0,-1). FORMULA "A Diofloortin equation": n such that 2*n^2=floor(n*sqrt(2)*ceiling(n*sqrt(2))). a(n)*a(n+3) = -2 + a(n+1)*a(n+2). From Paul Barry, Jun 06 2006: (Start) G.f.: x(1+x)^2/(1-6x^2+x^4); a(n) = ((sqrt(2)+1)^n-(sqrt(2)-1)^n)((sqrt(2)/8-1/4)*(-1)^n+sqrt(2)/8+1/4); a(n+1) = Sum_{k=0..floor((n+1)/2)} 2^k*(C(n+1,2k)-C(n,2k+1)*(1-(-1)^n)/2. (End) A000129(n+1) = A079496(n) + a(n). - Gary W. Adamson, Sep 18 2007 Equals A133566 * A000129, where A000129 = the Pell sequence. - Gary W. Adamson, Sep 18 2007 From Peter Bala, Mar 23 2018: (Start) a(2*n + 2) = a(2*n + 1) + sqrt( (1 + a(2*n + 1)^2)/2 ). a(2*n + 1) = 2*a(2*n) + sqrt( (1 + 2*a(2*n)^2) ). More generally, a(2*n+2*m+1) = sqrt(2)*a(2*n) o a(2*m+1), where o is the binary operation defined above, that is, a(2*n+2*m+1) = sqrt(2)*a(2*n)*sqrt(1 + a(2*m+1)^2) + a(2*m+1)*sqrt(1 + 2*a(2*n)^2). sqrt(2)*a(2*(n + m)) = (sqrt(2)*a(2*n)) o (sqrt(2)*a(2*m)), that is, a(2*n+2*m) = a(2*n)*sqrt(1 + 2*a(2*m)^2) + a(2*m)*sqrt(1 + 2*a(2*n)^2). sqrt(1 + 2*a(2*n)^2) = A001541(n). 1 + 2*a(2*n)^2 = A055792(n+1). a(2*n) - a(2*n-1) = A001653(n). (1 + a(2*n+1)^2)/2 = A008844(n). (End) a(n) = A000129(n) for even n and A001333(n) for odd n. - R. J. Mathar, Oct 15 2021 MAPLE a := proc (n) if `mod`(n, 2) = 1 then (1/2)*(sqrt(2) + 1)^n - (1/2)*(sqrt(2) - 1)^n else (1/2)*((sqrt(2) + 1)^n - (sqrt(2) - 1)^n)/sqrt(2) end if; end proc: seq(simplify(a(n)), n = 1..30); # Peter Bala, Mar 25 2018 MATHEMATICA a[n_] := ((Sqrt[2]+1)^n - (Sqrt[2]-1)^n) ((-1)^n(Sqrt[2]-2) + (Sqrt[2]+2))/8; Table[Simplify[a[n]], {n, 30}] (* after Paul Barry, Peter Luschny, Mar 29 2018 *) PROG (PARI) a(n)=([0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1; -1, 0, 6, 0]^(n-1)*[1; 2; 7; 12])[1, 1] \\ Charles R Greathouse IV, Jun 20 2015 CROSSREFS Bisections are A001542 and A002315. Cf. A084069, A084070, A133566, A079496, A001541, A001653, A008844, A055792, A049629, A108412, A143608. Sequence in context: A092831 A055257 A238366 * A192772 A353069 A046243 Adjacent sequences: A084065 A084066 A084067 * A084069 A084070 A084071 KEYWORD nonn,easy AUTHOR Benoit Cloitre, May 10 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 16 07:19 EDT 2024. Contains 373423 sequences. (Running on oeis4.)