login
This site is supported by donations to The OEIS Foundation.

 

Logo

The October issue of the Notices of the Amer. Math. Soc. has an article about the OEIS.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A084070 a(0)=0, a(1)=6, a(n)=38*a(n-1)-a(n-2). 5
0, 6, 228, 8658, 328776, 12484830, 474094764, 18003116202, 683644320912, 25960481078454, 985814636660340, 37434995712014466, 1421544022419889368, 53981237856243781518, 2049865494514843808316, 77840907553707820934490, 2955904621546382351702304 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

This sequence gives the values of y in solutions of the Diophantine equation x^2 - 10*y^2 = 1. The corresponding x values are in A078986. - Vincenzo Librandi, Aug 08 2010 [edited by Jon E. Schoenfield, May 04 2014]

LINKS

Indranil Ghosh, Table of n, a(n) for n = 0..632

Tanya Khovanova, Recursive Sequences

Index entries for linear recurrences with constant coefficients, signature (38, -1).

FORMULA

Numbers n such that 10*n^2=floor(n*sqrt(10)*ceil(n*sqrt(10))).

a(n) = 37*(a(n-1)+a(n-2))-a(n-3). a(n) = 39*(a(n-1)-a(n-2))+a(n-3). - Mohamed Bouhamida (bhmd95(AT)yahoo.fr), Sep 20 2006

O.g.f.: 6*x/(1-38*x+x^2). a(n) = 6*A078987(n-1). - R. J. Mathar, Feb 19 2008

a(n)=(1/20)*[19+6*sqrt(10)]^n*sqrt(10)-(1/20)*[19-6*sqrt(10)]^n*sqrt(10), with n>=0. - Paolo P. Lava, Jul 11 2008

MATHEMATICA

LinearRecurrence[{38, -1}, {0, 6}, 30] (* Harvey P. Dale, Nov 01 2011 *)

PROG

(PARI) u=0; v=6; for(n=2, 20, w=38*v-u; u=v; v=w; print1(w, ", "))

CROSSREFS

Cf. A001653, A001353, A060645, A001078, A001109, A084068, A084069, A221874.

Cf. A078986. - Vincenzo Librandi, Apr 14 2010

Sequence in context: A233142 A166502 A173083 * A282736 A277293 A177043

Adjacent sequences:  A084067 A084068 A084069 * A084071 A084072 A084073

KEYWORD

nonn

AUTHOR

Benoit Cloitre, May 10 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 22 19:04 EDT 2018. Contains 315270 sequences. (Running on oeis4.)