This site is supported by donations to The OEIS Foundation.

The October issue of the Notices of the Amer. Math. Soc. has an article about the OEIS.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A084070 a(0)=0, a(1)=6, a(n)=38*a(n-1)-a(n-2). 5
 0, 6, 228, 8658, 328776, 12484830, 474094764, 18003116202, 683644320912, 25960481078454, 985814636660340, 37434995712014466, 1421544022419889368, 53981237856243781518, 2049865494514843808316, 77840907553707820934490, 2955904621546382351702304 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS This sequence gives the values of y in solutions of the Diophantine equation x^2 - 10*y^2 = 1. The corresponding x values are in A078986. - Vincenzo Librandi, Aug 08 2010 [edited by Jon E. Schoenfield, May 04 2014] LINKS Indranil Ghosh, Table of n, a(n) for n = 0..632 Tanya Khovanova, Recursive Sequences Index entries for linear recurrences with constant coefficients, signature (38, -1). FORMULA Numbers n such that 10*n^2=floor(n*sqrt(10)*ceil(n*sqrt(10))). a(n) = 37*(a(n-1)+a(n-2))-a(n-3). a(n) = 39*(a(n-1)-a(n-2))+a(n-3). - Mohamed Bouhamida (bhmd95(AT)yahoo.fr), Sep 20 2006 O.g.f.: 6*x/(1-38*x+x^2). a(n) = 6*A078987(n-1). - R. J. Mathar, Feb 19 2008 a(n)=(1/20)*[19+6*sqrt(10)]^n*sqrt(10)-(1/20)*[19-6*sqrt(10)]^n*sqrt(10), with n>=0. - Paolo P. Lava, Jul 11 2008 MATHEMATICA LinearRecurrence[{38, -1}, {0, 6}, 30] (* Harvey P. Dale, Nov 01 2011 *) PROG (PARI) u=0; v=6; for(n=2, 20, w=38*v-u; u=v; v=w; print1(w, ", ")) CROSSREFS Cf. A001653, A001353, A060645, A001078, A001109, A084068, A084069, A221874. Cf. A078986. - Vincenzo Librandi, Apr 14 2010 Sequence in context: A233142 A166502 A173083 * A282736 A277293 A177043 Adjacent sequences:  A084067 A084068 A084069 * A084071 A084072 A084073 KEYWORD nonn AUTHOR Benoit Cloitre, May 10 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 22 19:04 EDT 2018. Contains 315270 sequences. (Running on oeis4.)