The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A277293 G.f. A(x) satisfies: Series_Reversion( A(x) + 2*A(x)^3 ) = A(x) - 2*A(x)^3. 2
1, 6, 230, 11676, 663174, 41413812, 2680851420, 188202575736, 11594488853190, 1403241101718852, -168694608332762892, 147980852726994346248, -105389748185249598629220, 93603955226272690108355208, -97621599698823169573607867400, 118585871916859034002263802974192, -165925215611130932978517186291637434, 264930310299987157013624532678164003556, -478773962141712793295304310624498264046460 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
LINKS
FORMULA
G.f. A(x) = Sum_{n>=1} a(n) * x^(4*n-3) satisfies:
(1) A( A(x) + 2*A(x)^3 ) = G(x),
(2) G( A(x) - 2*A(x)^3 ) = A(x),
(3) A( A(x) - 2*A(x)^3 ) = -G(-x),
(4) A( A(x-2*x^3) + 2*A(x-2*x^3)^3 ) = x,
where G(x) = x + 2*G(x)^3 = Sum_{n>=1} 2^(n-1) * binomial(3*n-2,n-1)/(3*n-2) * x^(2*n-1).
EXAMPLE
G.f.: A(x) = x + 6*x^5 + 230*x^9 + 11676*x^13 + 663174*x^17 + 41413812*x^21 + 2680851420*x^25 + 188202575736*x^29 + 11594488853190*x^33 +...
such that Series_Reversion( A(x) + 2*A(x)^3 ) = A(x) - 2*A(x)^3, where
A(x)^3 = x^3 + 18*x^7 + 798*x^11 + 43524*x^15 + 2593398*x^19 + 166441788*x^23 + 11038085612*x^27 + 778999431816*x^31 + 50589526452390*x^35 +...
A(x) + 2*A(x)^3 = x + 2*x^3 + 6*x^5 + 36*x^7 + 230*x^9 + 1596*x^11 + 11676*x^13 + 87048*x^15 + 663174*x^17 + 5186796*x^19 + 41413812*x^21 + 332883576*x^23 + 2680851420*x^25 + 22076171224*x^27 + 188202575736*x^29 + 1557998863632*x^31 + 11594488853190*x^33 + 101179052904780*x^35 +...
Also,
A( A(x) + 2*A(x)^3 ) = x + 2*x^3 + 12*x^5 + 96*x^7 + 880*x^9 + 8736*x^11 + 91392*x^13 +...+ 2^(n-1)*binomial(3*n-2,n-1)/(3*n-2)*x^(2*n-1) +...
PROG
(PARI) {a(n) = my(Oxn=x*O(x^(4*n)), A = x +Oxn); for(i=1, 4*n, A = A + (x - subst(A + 2*A^3, x, A - 2*A^3 ))/2); polcoeff(A, 4*n-3)}
for(n=1, 25, print1(a(n), ", "))
CROSSREFS
Sequence in context: A338297 A084070 A282736 * A177043 A309009 A117064
KEYWORD
sign
AUTHOR
Paul D. Hanna, Oct 12 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 22 03:46 EDT 2024. Contains 372741 sequences. (Running on oeis4.)