|
|
A005668
|
|
Denominators of continued fraction convergents to sqrt(10).
(Formerly M4227)
|
|
38
|
|
|
0, 1, 6, 37, 228, 1405, 8658, 53353, 328776, 2026009, 12484830, 76934989, 474094764, 2921503573, 18003116202, 110940200785, 683644320912, 4212806126257, 25960481078454, 159975692596981, 985814636660340, 6074863512559021, 37434995712014466, 230684837784645817
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
a(2*n+1) with b(2*n+1) := A005667(2*n+1), n >= 0, give all (positive integer) solutions to Pell equation b^2 - 10*a^2 = -1, a(2*n) with b(2*n) := A005667(2*n), n>=1, give all (positive integer) solutions to Pell equation b^2 - 10*a^2 = +1 (cf. Emerson reference).
Bisection: a(2*n)= 6*S(n-1,2*19) = 6*A078987(n-1), n >= 0 and a(2*n+1) = A097315(n), n >= 0, with S(n,x) Chebyshev's polynomials of the second kind. S(-1,x)=0. See A049310.
Sqrt(10) = 6/2 + 6/37 + 6/(37*1405) + 6/(1405*53353) + ... - Gary W. Adamson, Dec 21 2007
a(p) == 40^((p-1)/2) mod p, for odd primes p. - Gary W. Adamson, Feb 22 2009
For n>=2, a(n) equals the permanent of the (n-1)X(n-1) tridiagonal matrix with 6's along the main diagonal and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011
For n>=1, a(n) equals the number of words of length n-1 on alphabet {0,1,...,6} avoiding runs of zeros of odd lengths. - Milan Janjic, Jan 28 2015
Also called the 6-metallonacci sequence; the g.f. 1/(1-k*x-x^2) gives the k-metallonacci sequence.
a(n+1) is the number of tilings of an n-board (a board with dimensions n X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are 6 kinds of squares available. (End)
|
|
REFERENCES
|
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
|
|
FORMULA
|
G.f.: x / (1 - 6*x - x^2).
a(n) = 6*a(n-1) + a(n-2).
a(n) = ((-i)^(n-1))*S(n-1, 3*i) with S(n, x) Chebyshev's polynomials of the second kind (see A049310) and i^2=-1.
a(n) = F(n, 6), the n-th Fibonacci polynomial evaluated at x=6. - T. D. Noe, Jan 19 2006
a(n) = ((3+sqrt(10))^n - (3-sqrt(10))^n)/(2*sqrt(10)).
a(n) = Sum_{i=0..floor((n-1)/2)} binomial(n-1-i,i)*6^(n-1-2*i). (End)
a(n) = 6^(n-1)*hypergeom([1-n/2, (1-n)/2], [1-n], -1/9)) for n >= 2. - Peter Luschny, Jun 28 2017
|
|
EXAMPLE
|
G.f. = x + 6*x^2 + 37*x^3 + 228*x^4 + 1405*x^5 + 8658*x^6 + 53353*x^7 + ...
|
|
MAPLE
|
evalf(sqrt(10), 200); convert(%, confrac, fractionlist); fractionlist;
a := n -> `if`(n<2, n, 6^(n-1)*hypergeom([1-n/2, (1-n)/2], [1-n], -1/9)):
|
|
MATHEMATICA
|
a[ n_] := (-I)^(n - 1) ChebyshevU[ n - 1, 3 I]; (* Michael Somos, May 28 2014 *)
a[ n_] := MatrixPower[ {{0, 1}, {1, 6}}, n + 1][[1, 1]]; (* Michael Somos, May 28 2014 *)
Join[{0}, Convergents[Sqrt[10], 30]//Denominator] (* Harvey P. Dale, Dec 28 2022 *)
|
|
PROG
|
(Sage) from sage.combinat.sloane_functions import recur_gen3; it = recur_gen3(0, 1, 6, 6, 1, 0); [next(it) for i in range(1, 22)] # Zerinvary Lajos, Jul 09 2008
(Sage) [lucas_number1(n, 6, -1) for n in range(0, 21)]# Zerinvary Lajos, Apr 24 2009
(Magma) [n le 2 select n-1 else 6*Self(n-1)+Self(n-2): n in [1..25]]; // Vincenzo Librandi, Feb 23 2013
(PARI) {a(n) = ([0, 1; 1, 6]^(n+1)) [1, 1]}; /* Michael Somos, May 28 2014 */
(PARI) {a(n) = (-I)^(n-1) * polchebyshev( n-1, 2, 3*I)}; /* Michael Somos, May 28 2014 */
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,cofr,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|