login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192807
Coefficient of x in the reduction of the polynomial (x^2 + x + 1)^n by x^3 -> x^2 + x + 1.
2
0, 1, 6, 37, 230, 1431, 8904, 55403, 344732, 2145013, 13346834, 83047505, 516743378, 3215312955, 20006521300, 124485827703, 774583500376, 4819661885417, 29989201523742, 186600684739485, 1161078447443102, 7224534909928031
OFFSET
0,3
COMMENTS
For discussions of polynomial reduction, see A192232 and A192744.
FORMULA
a(n) = 7*a(n-1) - 5*a(n-2) + a(n-3).
G.f.: x*(x - 1)/(x^3 - 5*x^2 + 7*x - 1). - Colin Barker, Nov 23 2012
MATHEMATICA
(See A192806.)
LinearRecurrence[{7, -5, 1}, {0, 1, 6}, 30] (* Harvey P. Dale, Oct 09 2017 *)
PROG
(PARI) my(x='x+O('x^30)); concat([0], Vec(x*(x-1)/(x^3-5*x^2+7*x-1))) \\ G. C. Greubel, Jan 02 2019
(Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!( x*(x-1)/(x^3-5*x^2+7*x-1) )); // G. C. Greubel, Jan 02 2019
(Sage) (x*(x-1)/(x^3-5*x^2+7*x-1)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 02 2019
(GAP) a:=[0, 1, 6];; for n in [4..25] do a[n]:=7*a[n-1]-5*a[n-2]+a[n-3]; od; Print(a); # Muniru A Asiru, Jan 02 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jul 10 2011
STATUS
approved