login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192804
Constant term in the reduction of the polynomial 1+x+x^2+...+x^n by x^3->x^2+x+1. See Comments.
3
1, 1, 1, 2, 3, 5, 9, 16, 29, 53, 97, 178, 327, 601, 1105, 2032, 3737, 6873, 12641, 23250, 42763, 78653, 144665, 266080, 489397, 900141, 1655617, 3045154, 5600911, 10301681, 18947745, 34850336, 64099761, 117897841, 216847937, 398845538
OFFSET
0,4
COMMENTS
For discussions of polynomial reduction, see A192232 and A192744.
This sequence provides the most-significant place-values in the construction of a tribonacci code. - James Dow Allen, Jul 12 2021
FORMULA
a(n) = 2*a(n-1) - a(n-4).
a(n) = a(n-1) + a(n-2) + a(n-3) - 1. - Alzhekeyev Ascar M, Feb 05 2012
G.f.: ( 1-x-x^2 ) / ( (x-1)*(x^3+x^2+x-1) ). - R. J. Mathar, May 06 2014
a(n) - a(n-1) = A000073(n-1). - R. J. Mathar, May 06 2014
EXAMPLE
The first five polynomials p(n,x) and their reductions:
p(1,x)=1 -> 1,
p(2,x)=x+1 -> x+1,
p(3,x)=x^2+x+1 -> x^2+x+1,
p(4,x)=x^3+x^2+x+1 -> 2x^2+2x+2,
p(5,x)=x^4+x^3+x^2+x+1 -> 4x^2+4*x+3, so that
A192804=(1,1,1,2,3,...), A000073=(0,1,1,2,4,...), A008937=(0,0,1,2,4,...).
MATHEMATICA
q = x^3; s = x^2 + x + 1; z = 40;
p[0, x_] := 1; p[n_, x_] := x^n + p[n - 1, x];
Table[Expand[p[n, x]], {n, 0, 7}]
reduce[{p1_, q_, s_, x_}] :=
FixedPoint[(s PolynomialQuotient @@ #1 +
PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}]
(* A192804 *)
u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}]
(* A000073 *)
u3 = Table[Coefficient[Part[t, n], x, 2], {n, 1, z}]
(* A008937 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jul 10 2011
STATUS
approved