OFFSET
0,4
COMMENTS
This sequence provides the most-significant place-values in the construction of a tribonacci code. - James Dow Allen, Jul 12 2021
LINKS
James Dow Allen, Constructing the Tribonacci Code.
Index entries for linear recurrences with constant coefficients, signature (2,0,0,-1).
FORMULA
a(n) = 2*a(n-1) - a(n-4).
a(n) = a(n-1) + a(n-2) + a(n-3) - 1. - Alzhekeyev Ascar M, Feb 05 2012
G.f.: ( 1-x-x^2 ) / ( (x-1)*(x^3+x^2+x-1) ). - R. J. Mathar, May 06 2014
a(n) - a(n-1) = A000073(n-1). - R. J. Mathar, May 06 2014
EXAMPLE
MATHEMATICA
q = x^3; s = x^2 + x + 1; z = 40;
p[0, x_] := 1; p[n_, x_] := x^n + p[n - 1, x];
Table[Expand[p[n, x]], {n, 0, 7}]
reduce[{p1_, q_, s_, x_}] :=
FixedPoint[(s PolynomialQuotient @@ #1 +
PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}]
(* A192804 *)
u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}]
(* A000073 *)
u3 = Table[Coefficient[Part[t, n], x, 2], {n, 1, z}]
(* A008937 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jul 10 2011
STATUS
approved