login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Constant term in the reduction of the polynomial 1+x+x^2+...+x^n by x^3->x^2+x+1. See Comments.
3

%I #42 Jul 23 2021 09:02:49

%S 1,1,1,2,3,5,9,16,29,53,97,178,327,601,1105,2032,3737,6873,12641,

%T 23250,42763,78653,144665,266080,489397,900141,1655617,3045154,

%U 5600911,10301681,18947745,34850336,64099761,117897841,216847937,398845538

%N Constant term in the reduction of the polynomial 1+x+x^2+...+x^n by x^3->x^2+x+1. See Comments.

%C For discussions of polynomial reduction, see A192232 and A192744.

%C This sequence provides the most-significant place-values in the construction of a tribonacci code. - _James Dow Allen_, Jul 12 2021

%H James Dow Allen, <a href="https://fabpedigree.com/james/tribocod.htm">Constructing the Tribonacci Code</a>.

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,0,-1).

%F a(n) = 2*a(n-1) - a(n-4).

%F a(n) = a(n-1) + a(n-2) + a(n-3) - 1. - _Alzhekeyev Ascar M_, Feb 05 2012

%F G.f.: ( 1-x-x^2 ) / ( (x-1)*(x^3+x^2+x-1) ). - _R. J. Mathar_, May 06 2014

%F a(n) - a(n-1) = A000073(n-1). - _R. J. Mathar_, May 06 2014

%e The first five polynomials p(n,x) and their reductions:

%e p(1,x)=1 -> 1,

%e p(2,x)=x+1 -> x+1,

%e p(3,x)=x^2+x+1 -> x^2+x+1,

%e p(4,x)=x^3+x^2+x+1 -> 2x^2+2x+2,

%e p(5,x)=x^4+x^3+x^2+x+1 -> 4x^2+4*x+3, so that

%e A192804=(1,1,1,2,3,...), A000073=(0,1,1,2,4,...), A008937=(0,0,1,2,4,...).

%t q = x^3; s = x^2 + x + 1; z = 40;

%t p[0, x_] := 1; p[n_, x_] := x^n + p[n - 1, x];

%t Table[Expand[p[n, x]], {n, 0, 7}]

%t reduce[{p1_, q_, s_, x_}] :=

%t FixedPoint[(s PolynomialQuotient @@ #1 +

%t PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]

%t t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];

%t u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}]

%t (* A192804 *)

%t u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}]

%t (* A000073 *)

%t u3 = Table[Coefficient[Part[t, n], x, 2], {n, 1, z}]

%t (* A008937 *)

%Y Cf. A192744, A192232, A000073.

%K nonn,easy

%O 0,4

%A _Clark Kimberling_, Jul 10 2011