login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192810
Coefficient of x^2 in the reduction of the polynomial (x^2 + 2)^n by x^3 -> x^2 + 2.
2
0, 1, 5, 23, 109, 527, 2565, 12503, 60957, 297183, 1448821, 7063207, 34434061, 167870511, 818390501, 3989759863, 19450597117, 94824185471, 462280211797, 2253676033863, 10986963179245, 53562871542735, 261125950919109, 1273022903354903
OFFSET
0,3
COMMENTS
For discussions of polynomial reduction, see A192232 and A192744.
FORMULA
a(n) = 7*a(n-1) - 12*a(n-2) + 8*a(n-3).
G.f.: x*(1-2*x)/(1-7*x+12*x^2-8*x^3). - Colin Barker, Jul 26 2012
MATHEMATICA
(See A192808.)
LinearRecurrence[{7, -12, 8}, {0, 1, 5}, 30] (* G. C. Greubel, Jan 02 2019 *)
CoefficientList[Series[x (1-2x)/(1-7x+12x^2-8x^3), {x, 0, 30}], x] (* Harvey P. Dale, Aug 26 2021 *)
PROG
(PARI) my(x='x+O('x^30)); concat([0], Vec(x*(1-2*x)/(1-7*x+12*x^2-8*x^3) )) \\ ~~~
(Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!( x*(1-2*x)/(1-7*x+12*x^2-8*x^3) )); // G. C. Greubel, Jan 02 2019
(Sage) (x*(1-2*x)/(1-7*x+12*x^2-8*x^3)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 02 2019
(GAP) a:=[0, 1, 5];; for n in [4..25] do a[n]:=7*a[n-1]-12*a[n-2]+8*a[n-3]; od; Print(a); # Muniru A Asiru, Jan 02 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jul 10 2011
STATUS
approved