login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A192810 Coefficient of x^2 in the reduction of the polynomial (x^2 + 2)^n by x^3 -> x^2 + 2. 2
0, 1, 5, 23, 109, 527, 2565, 12503, 60957, 297183, 1448821, 7063207, 34434061, 167870511, 818390501, 3989759863, 19450597117, 94824185471, 462280211797, 2253676033863, 10986963179245, 53562871542735, 261125950919109, 1273022903354903 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

For discussions of polynomial reduction, see A192232 and A192744.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (7,-12,8).

FORMULA

a(n) = 7*a(n-1) - 12*a(n-2) + 8*a(n-3).

G.f.: x*(1-2*x)/(1-7*x+12*x^2-8*x^3). - Colin Barker, Jul 26 2012

MATHEMATICA

(See A192808.)

LinearRecurrence[{7, -12, 8}, {0, 1, 5}, 30] (* G. C. Greubel, Jan 02 2019 *)

CoefficientList[Series[x (1-2x)/(1-7x+12x^2-8x^3), {x, 0, 30}], x] (* Harvey P. Dale, Aug 26 2021 *)

PROG

(PARI) my(x='x+O('x^30)); concat([0], Vec(x*(1-2*x)/(1-7*x+12*x^2-8*x^3) )) \\ ~~~

(MAGMA) m:=30; R<x>:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!( x*(1-2*x)/(1-7*x+12*x^2-8*x^3) )); // G. C. Greubel, Jan 02 2019

(Sage) (x*(1-2*x)/(1-7*x+12*x^2-8*x^3)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 02 2019

(GAP) a:=[0, 1, 5];; for n in [4..25] do a[n]:=7*a[n-1]-12*a[n-2]+8*a[n-3]; od; Print(a); # Muniru A Asiru, Jan 02 2019

CROSSREFS

Cf. A192744, A192232, A192808.

Sequence in context: A109877 A336704 A179598 * A278677 A017974 A244936

Adjacent sequences:  A192807 A192808 A192809 * A192811 A192812 A192813

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Jul 10 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 10:24 EST 2021. Contains 349563 sequences. (Running on oeis4.)