OFFSET
0,1
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (3,-2,0,-1,1,-1,1).
FORMULA
a(n) = 3*a(n-1) - 2*a(n-2) - a(n-4) + a(n-5) - a(n-6) + a(n-7).
G.f.: (3 -8*x +4*x^2 -x^4 +x^6 +2*x^3) / ((1-x)*(x^3+x^2-1)*(x^3-x^2+2*x -1)). - R. J. Mathar, May 06 2014
MAPLE
seq(coeff(series((3-8*x+4*x^2-x^4+x^6+2*x^3)/((1-x)*(x^3+x^2-1)*(x^3-x^2+2*x-1)), x, n+1), x, n), n = 0 .. 40); # Muniru A Asiru, Jan 03 2019
MATHEMATICA
q = x^3; s = x + 1; z = 40;
p[n_, x_] := x^(2 n) + x^n + 1;
Table[Expand[p[n, x]], {n, 0, 7}]
reduce[{p1_, q_, s_, x_}] :=
FixedPoint[(s PolynomialQuotient @@ #1 +
PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192812 *)
u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192813 *)
LinearRecurrence[{3, -2, 0, -1, 1, -1, 1}, {3, 1, 1, 3, 3, 5, 7}, 30] (* G. C. Greubel, Jan 03 2019 *)
PROG
(PARI) my(x='x+O('x^40)); Vec((3-8*x+4*x^2-x^4+x^6+2*x^3)/((1-x)*(1-x^2-x^3)*(1-2*x+x^2-x^3))) \\ G. C. Greubel, Jan 03 2019
(Magma) m:=40; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (3-8*x+4*x^2-x^4+x^6+2*x^3)/((1-x)*(1-x^2-x^3)*(1-2*x+x^2-x^3)) )); // G. C. Greubel, Jan 03 2019
(Sage) ((3-8*x+4*x^2-x^4+x^6+2*x^3)/((1-x)*(1-x^2-x^3)*(1-2*x+x^2-x^3)) ).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jan 03 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jul 10 2011
STATUS
approved