Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Sep 08 2022 08:45:58
%S 0,1,5,23,109,527,2565,12503,60957,297183,1448821,7063207,34434061,
%T 167870511,818390501,3989759863,19450597117,94824185471,462280211797,
%U 2253676033863,10986963179245,53562871542735,261125950919109,1273022903354903
%N Coefficient of x^2 in the reduction of the polynomial (x^2 + 2)^n by x^3 -> x^2 + 2.
%C For discussions of polynomial reduction, see A192232 and A192744.
%H G. C. Greubel, <a href="/A192810/b192810.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (7,-12,8).
%F a(n) = 7*a(n-1) - 12*a(n-2) + 8*a(n-3).
%F G.f.: x*(1-2*x)/(1-7*x+12*x^2-8*x^3). - _Colin Barker_, Jul 26 2012
%t (See A192808.)
%t LinearRecurrence[{7,-12,8}, {0,1,5}, 30] (* _G. C. Greubel_, Jan 02 2019 *)
%t CoefficientList[Series[x (1-2x)/(1-7x+12x^2-8x^3),{x,0,30}],x] (* _Harvey P. Dale_, Aug 26 2021 *)
%o (PARI) my(x='x+O('x^30)); concat([0], Vec(x*(1-2*x)/(1-7*x+12*x^2-8*x^3) )) \\ ~~~
%o (Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!( x*(1-2*x)/(1-7*x+12*x^2-8*x^3) )); // _G. C. Greubel_, Jan 02 2019
%o (Sage) (x*(1-2*x)/(1-7*x+12*x^2-8*x^3)).series(x, 30).coefficients(x, sparse=False) # _G. C. Greubel_, Jan 02 2019
%o (GAP) a:=[0,1,5];; for n in [4..25] do a[n]:=7*a[n-1]-12*a[n-2]+8*a[n-3]; od; Print(a); # _Muniru A Asiru_, Jan 02 2019
%Y Cf. A192744, A192232, A192808.
%K nonn,easy
%O 0,3
%A _Clark Kimberling_, Jul 10 2011