login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A076026
Expansion of g.f.: (1-4*x*C)/(1-5*x*C) where C = (1/2-1/2*(1-4*x)^(1/2))/x = g.f. for Catalan numbers A000108.
8
1, 1, 6, 37, 230, 1434, 8952, 55917, 349374, 2183230, 13643972, 85270626, 532926716, 3330739972, 20816939100, 130105200765, 813155081070, 5082210417270, 31763782696740, 198523522444950, 1240771573465140, 7754820693127020, 48467623215477120, 302922622226091090
OFFSET
0,3
COMMENTS
a(n) is the number of Motzkin paths of length n-1 in which the (1,0)-steps at level 0 come in 6 colors and those at a higher level come in 2 colors. Example: a(4)=230 because, denoting U=(1,1), H=(1,0), and D=(1,-1), we have 6^3 = 216 paths of shape HHH, 6 paths of shape HUD, 6 paths of shape UDH, and 2 paths of shape UHD. - Emeric Deutsch, May 02 2011
REFERENCES
L. W. Shapiro and C. J. Wang, Generating identities via 2 X 2 matrices, Congressus Numerantium, 205 (2010), 33-46.
LINKS
Richard Ehrenborg, Gábor Hetyei, and Margaret Readdy, Catalan-Spitzer permutations, arXiv:2310.06288 [math.CO], 2023. See p. 20.
FORMULA
a(n+1) = Sum_{k=0..n} A039598(n,k)*4^k. - Philippe Deléham, Mar 21 2007
a(n) = Sum_{k=0..n} A039599(n,k)*A015521(k), for n >= 1. - Philippe Deléham, Nov 22 2007
Let A be the Toeplitz matrix of order n defined by: A[i,i-1]=-1, A[i,j]=Catalan(j-i), (i<=j), and A[i,j]=0, otherwise. Then, for n >= 1, a(n+1)=(-1)^n*charpoly(A,-5). - Milan Janjic, Jul 08 2010
From Gary W. Adamson, Jul 25 2011: (Start)
a(n) = upper left term in M^(n-1), M = an infinite square production matrix as follows:
6, 1, 0, 0, 0, ...
1, 1, 1, 0, 0, ...
1, 1, 1, 1, 0, ...
1, 1, 1, 1, 1, ...
... (End)
D-finite with recurrence: 4*n*a(n) = (41*n-24)*a(n-1) - 50*(2*n-3)*a(n-2). - Vaclav Kotesovec, Dec 09 2013
a(n) ~ 3*5^(2*n-1)/4^(n+1). - Vaclav Kotesovec, Dec 09 2013
O.g.f. A(x) = (1 - *Sum_{n >= 1} binomial(2*n,n)*x^n)/(1 - (3/2)*Sum_{n >= 1} binomial(2*n,n)*x^n). - Peter Bala, Sep 01 2016
MATHEMATICA
CoefficientList[Series[(2-4*Sqrt[1-4*x])/(3-5*Sqrt[1-4*x]), {x, 0, 30}], x] (* Vaclav Kotesovec, Dec 09 2013 *)
Flatten[{1, Table[FullSimplify[(2*n)!*Hypergeometric2F1Regularized[1, n+1/2, n+2, 16/25] / (25*n!) + 3*5^(2*n-1)/4^(n+1)], {n, 1, 30}]}] (* Vaclav Kotesovec, Dec 09 2013 *)
PROG
(PARI) my(x='x+O('x^30)); Vec((2-4*sqrt(1-4*x))/(3-5*sqrt(1-4*x))) \\ G. C. Greubel, May 04 2019
(Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (2- 4*Sqrt(1-4*x))/(3-5*Sqrt(1-4*x)) )); // G. C. Greubel, May 04 2019
(Sage) ((2-4*sqrt(1-4*x))/(3-5*sqrt(1-4*x))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 04 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Oct 29 2002
STATUS
approved