login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A073133 Table by antidiagonals of T(n,k) = n*T(n,k-1) + T(n,k-2) starting with T(n,1) = 1. 16
1, 1, 1, 1, 2, 2, 1, 3, 5, 3, 1, 4, 10, 12, 5, 1, 5, 17, 33, 29, 8, 1, 6, 26, 72, 109, 70, 13, 1, 7, 37, 135, 305, 360, 169, 21, 1, 8, 50, 228, 701, 1292, 1189, 408, 34, 1, 9, 65, 357, 1405, 3640, 5473, 3927, 985, 55, 1, 10, 82, 528, 2549, 8658, 18901, 23184, 12970, 2378, 89 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

Columns of the array are generated from Fibonacci polynomials f(x). They are: (1), (x), (x^2 + 1), (x^3 + 2x), (x^4 + 3x^2 + 1), (x^5 + 4x^3 + 3x), (x^6 + 5x^4 + 6x^2 +1),... If column headings start 0, 1, 2... then the terms in the n-th column are generated from the n-th degree Fibonacci polynomial. For example, column 5 (8, 70, 360,...) is generated from f(x), x = 1,2,3...; fifth degree polynomial x^5 + 4x^3 + 3x; e.g. f(2) = 70 = 2^5 + 4*8 + 3*2. - Gary W. Adamson, Apr 02 2006

The ratio of two consecutive entries of the sequence in the n-th row approaches (n + sqrt(n^2 + 4))/2. Example: The sequence beginning (1, 3, 10, 33,...) tends to 3.302775..., = (3 + sqrt(13))/2. - Gary W. Adamson, Aug 12 2013

As to the array sequences, (n+1)-th sequence is the INVERT transform of the n-th sequence. - Gary W. Adamson, Aug 20 2013

The array can be extended infinitely above the Fibonacci row by taking successive INVERTi transforms, resulting in:

  ...

  1, -2, 5, -12, 29, -70,...

  1, -1, 2, -3, 5, -8,...

  l, 0, 1, 0, 1, 0, 1,...

  1, 1, 2, 3, 5, 8, 13,...

  1, 2, 5, 12, 29, 70,...

  ...

  This results in an infinite array in which sequences above the (1, 0, 1, 0,...) are reflections of the sequences below, except for the alternate signs. Any sequence in the (+ sign)

  row starting (1, n,...) is the (2*n-th) INVERT transform of the same sequence but with alternate signs.  Example: (1, 2, 5, 12,...) is the (2*2) = fourth INVERT transform of (1, -2, 5, -12,...) by inspection. Conjecture:  This "reflection" principle will result from taking successive INVERT transforms of any aerated sequence starting 1,...and with positive signs. Likewise, the rows above the aerated sequence are successive INVERTi transforms of the aerated sequence. - Gary W. Adamson, Jul 14 2019

LINKS

G. C. Greubel, Antidiagonals n = 1..100, flattened

FORMULA

T(n, k) = A073134(n, k) + 2*A073135(n, k-2) = sum_j{0<=j<k) abs(A049310(k-1, j)*n^j).

T(n,k) = [[0,1; 1,n]^{k+1}]_{1,1}, n,k in {1,2,...}. - L. Edson Jeffery, Sep 23 2012

G.f. for row n: x/(1-n*x-x^2). - L. Edson Jeffery, Aug 28 2013

EXAMPLE

Table begins:

1, 1, 2, 3, 5, 8, 13, ...

1, 2, 5, 12, 29, 70, 169, ...

1, 3, 10, 33, 109, 360, 1189, ...

1, 4, 17, 72, 305, 1292, 5473, ... etc.

MAPLE

A073133 := proc(n, k)

    option remember;

    if k <= 1 then

        k;

    else

        n*procname(n, k-1)+procname(n, k-2) ;

    end if;

end proc:

seq(seq( A073133(d-k, k), k=1..d-1), d=2..13) ; # R. J. Mathar, Aug 16 2019

MATHEMATICA

T[n_, 1]:= 1; T[n_, k_]:= T[n, k] = If[k<0, 0, n*T[n, k-1] + T[n, k-2]]; Table[T[n-k+1, k], {n, 15}, {k, n}]//Flatten (* G. C. Greubel, Aug 12 2019 *)

PROG

(PARI) T(n, k) = if(k==1, 1, k<0, 0, n*T(n, k) +T(n, k-2));

for(n=1, 15, for(k=1, n, print1(T(n-k+1, k), ", "))) \\ G. C. Greubel, Aug 12 2019

(Sage)

def T(n, k):

    if (k<0): return 0

    elif (k==1): return 1

    else: return n*T(n, k-1) + T(n, k-2)

[[T(n-k+1, k) for k in (1..n)] for n in (1..15)] # G. C. Greubel, Aug 12 2019

(GAP)

T:= function(n, k)

    if k<0 then return 0;

    elif k=1 then return 1;

    else return n*T(n, k-1) + T(n, k-2);

    fi;

  end;

Flat(List([1..15], n-> List([1..n], k-> T(n-k+1, k) ))); # G. C. Greubel, Aug 12 2019

CROSSREFS

Rows include (with some gaps) A000045, A000129, A006190, A001076, A052918, A005668, A054413, A041025, A041041, A049666, A041061, A041085 etc.

Columns include A000012, A000027, A002522, A054602, A057721, etc.

Different from A081572.

Sequence in context: A060850 A208336 A038137 * A106179 A081572 A292630

Adjacent sequences:  A073130 A073131 A073132 * A073134 A073135 A073136

KEYWORD

nonn,tabl,easy

AUTHOR

Henry Bottomley, Jul 16 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 18 07:22 EST 2019. Contains 329252 sequences. (Running on oeis4.)