The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A038137 Reflection of A037027: T(n,m) = U(n,n-m), m=0..n, where U is as in A037027. 9
 1, 1, 1, 1, 2, 2, 1, 3, 5, 3, 1, 4, 9, 10, 5, 1, 5, 14, 22, 20, 8, 1, 6, 20, 40, 51, 38, 13, 1, 7, 27, 65, 105, 111, 71, 21, 1, 8, 35, 98, 190, 256, 233, 130, 34, 1, 9, 44, 140, 315, 511, 594, 474, 235, 55, 1, 10, 54, 192, 490, 924, 1295, 1324, 942, 420, 89, 1, 11, 65, 255 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Number of lattice paths from (0,0) to (n,k) using steps (1,0), (1,1), (2,2). - Joerg Arndt, Jul 01 2011 The n-th diagonal D(n) = {T(n,0), T(n+1,1), ..., T(n+m,m), ...} of the triangle has generating function F(x) = 1/(1 - x - x^2)^(n+1) for n = 0,1,2,.... - L. Edson Jeffery, Mar 20 2011 Let p(n,x) denote the Fibonacci polynomial, defined by p(1,x) = 1, p(2,x) = x, and p(n,x) = x*p(n-1,x) + p(n-2,x) for n >= 3. Let q(n,x) be the numerator polynomial of the rational function p(n, 1 + 1/x). The coefficients of the polynomial q(n,x) are given by the (n-1)-th row of T(n,k). E.g., p(5,x) = 1 + 3*x^2 + x^4 gives q(5,x) = 1 + 4*x + 9*x^2 + 10*x^2 + 5*x^4. - Clark Kimberling, Nov 04 2013 LINKS Reinhard Zumkeller, Rows n = 0..150 of triangle, flattened Pieter Moree, Convoluted convolved Fibonacci numbers, arXiv:math/0311205 [math.CO], 2003. Pieter Moree, Convoluted convolved Fibonacci numbers, Journal of Integer Sequences, Vol. 7 (2004), Article 04.2.2. Eric Weisstein's World of Mathematics, Fibonacci polynomial. FORMULA From Paul Barry, Oct 24 2005: (Start) G.f.: 1/(1 - x - x*y - x^2*y^2). T(n,k) = Sum_{j=0..n} C((n+j)/2, j) * (1 + (-1)^(n+j)) * C(j, n-k)/2. (End) T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k-2), T(n,k) = 0 if n < 0 or if n < k, and T(0,0) = 1. - Philippe Deléham, Nov 30 2006 Sum_{k=0..n} (-1)^k*T(n,k) = A059841(n). - Philippe Deléham, Nov 30 2006 T(n,k) = A208336(n+1,k).- Philippe Deléham, Apr 05 2012 EXAMPLE Triangle T(n,k) (with rows n >= 0 and columns 0 <= k <= n) begins 1; 1, 1; 1, 2, 2; 1, 3, 5, 3; 1, 4, 9, 10, 5; 1, 5, 14, 22, 20, 8; 1, 6, 20, 40, 51, 38, 13; 1, 7, 27, 65, 105, 111, 71, 21; ... PROG (Haskell) a038137 n k = a038137_tabl !! n !! k a038137_row n = a038137_tabl !! n a038137_tabl = map reverse a037027_tabl -- Reinhard Zumkeller, Jul 08 2012 CROSSREFS Row sums are Pell numbers A000129. Diagonal sums are unsigned version of A077930. Cf. A037027, A059841, A208336. Sequence in context: A140767 A060850 A208336 * A073133 A106179 A081572 Adjacent sequences: A038134 A038135 A038136 * A038138 A038139 A038140 KEYWORD easy,nonn,tabl AUTHOR Floor van Lamoen EXTENSIONS Title corrected by L. Edson Jeffery, Apr 23 2011 Corrected by Philippe Deléham, Apr 05 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 22 20:45 EDT 2024. Contains 372758 sequences. (Running on oeis4.)