OFFSET
0,5
COMMENTS
Array rows are solutions of the recurrence a(n) = (2*k+1)*a(n-1) - A028387(k-1)*a(n-2), where a(0) = 1 and a(1) = k+1.
LINKS
G. C. Greubel, Antidiagonal rows n = 0..50, flattened
FORMULA
Rows are successive binomial transforms of F(n+1).
T(n, k) = ((5+sqrt(5))/10)*( (2*n + 1 + sqrt(5))/2)^k + ((5-sqrt(5)/10)*( 2*n + 1 - sqrt(5))/2 )^k.
From G. C. Greubel, May 27 2021: (Start)
T(n, k) = Sum_{j=0..k} binomial(k,j)*n^(k-j)*Fibonacci(j+1) (square array).
T(n, k) = Sum_{j=0..k} binomial(k,j)*(n-k)^(k-j)*Fibonacci(j+1) (antidiagonal triangle). (End)
EXAMPLE
The array rows begins as:
1, 1, 2, 3, 5, 8, 13, ... A000045;
1, 2, 5, 13, 34, 89, 233, ... A001519;
1, 3, 10, 35, 125, 450, 1625, ... A081567;
1, 4, 17, 75, 338, 1541, 7069, ... A081568;
1, 5, 26, 139, 757, 4172, 23165, ... A081569;
1, 6, 37, 233, 1490, 9633, 62753, ... A081570;
1, 7, 50, 363, 2669, 19814, 148153, ... A081571;
Antidiagonal triangle begins as:
1;
1, 1;
1, 2, 2;
1, 3, 5, 3;
1, 4, 10, 13, 5;
1, 5, 17, 35, 34, 8;
1, 6, 26, 75, 125, 89, 13;
1, 7, 37, 139, 338, 450, 233, 21;
1, 8, 50, 233, 757, 1541, 1625, 610, 34;
MATHEMATICA
T[n_, k_]:= If[n==0, Fibonacci[k+1], Sum[Binomial[k, j]*Fibonacci[j+1]*n^(k-j), {j, 0, k}]]; Table[T[n-k, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, May 26 2021 *)
PROG
(Magma)
A081572:= func< n, k | (&+[Binomial(k, j)*Fibonacci(j+1)*(n-k)^(k-j): j in [0..k]]) >;
[A081572(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 27 2021
(Sage)
def A081572(n, k): return sum( binomial(k, j)*fibonacci(j+1)*(n-k)^(k-j) for j in (0..k) )
flatten([[A081572(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 27 2021
CROSSREFS
KEYWORD
AUTHOR
Paul Barry, Mar 22 2003
STATUS
approved