login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081574
Fourth binomial transform of Fibonacci numbers F(n).
8
0, 1, 9, 62, 387, 2305, 13392, 76733, 436149, 2467414, 13919895, 78398189, 441105696, 2480385673, 13942462833, 78354837710, 440286745563, 2473838793577, 13899100976496, 78088971710501, 438717826841085
OFFSET
0,3
COMMENTS
Binomial transform of A099453(n-1):= [0,1,7,38,189,905,...].
Case k=4 of family of recurrences a(n) = (2k+1)*a(n-1) - A028387(k-1)*a(n-2), a(0)=0, a(1)=1.
LINKS
S. Falcon, Iterated Binomial Transforms of the k-Fibonacci Sequence, British Journal of Mathematics & Computer Science, 4 (22): 2014.
J. Pan, Multiple Binomial Transforms and Families of Integer Sequences , J. Int. Seq. 13 (2010), 10.4.2, F^(4).
FORMULA
a(n) = 9*a(n-1) - 19*a(n-1), a(0)=0, a(1)=1.
a(n) = ((sqrt(5)/2 + 9/2)^n - (9/2 - sqrt(5)/2)^n)/sqrt(5).
G.f.: x/(1 - 9*x + 19*x^2).
E.g.f.: 2*exp(9*x/2)*sinh(sqrt(5)*x/2)/sqrt(5). - Ilya Gutkovskiy, Aug 11 2017
MAPLE
seq(coeff(series(x/(1-9*x+19*x^2), x, n+1), x, n), n = 0..30); # G. C. Greubel, Aug 13 2019
MATHEMATICA
Join[{a=0, b=1}, Table[c=9*b-19*a; a=b; b=c, {n, 60}]] (* Vladimir Joseph Stephan Orlovsky, Jan 27 2011 *)
LinearRecurrence[{9, -19}, {0, 1}, 30] (* Harvey P. Dale, Dec 03 2011 *)
CoefficientList[Series[x/(1 -9x +19x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 09 2013 *)
PROG
(Sage) [lucas_number1(n, 9, 19) for n in range(0, 21)] # Zerinvary Lajos, Apr 23 2009
(Magma) [n le 2 select (n-1) else 9*Self(n-1)-19*Self(n-2): n in [1..25]]; // Vincenzo Librandi, Aug 09 2013
(PARI) my(x='x+O('x^30)); Vec(x/(1 - 9*x + 19*x^2)) \\ G. C. Greubel, Aug 13 2019
(GAP) a:=[0, 1];; for n in [3..30] do a[n]:=9*a[n-1]-19*a[n-2]; od; a; # G. C. Greubel, Aug 13 2019
CROSSREFS
Sequence in context: A328955 A098921 A027234 * A084151 A346396 A240391
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 22 2003
EXTENSIONS
Corrected by Philippe Deléham, Dec 16 2009
STATUS
approved