login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081576
Square array of binomial transforms of Fibonacci numbers, read by antidiagonals.
2
0, 0, 1, 0, 1, 1, 0, 1, 3, 2, 0, 1, 5, 8, 3, 0, 1, 7, 20, 21, 5, 0, 1, 9, 38, 75, 55, 8, 0, 1, 11, 62, 189, 275, 144, 13, 0, 1, 13, 92, 387, 905, 1000, 377, 21, 0, 1, 15, 128, 693, 2305, 4256, 3625, 987, 34, 0, 1, 17, 170, 1131, 4955, 13392, 19837, 13125, 2584, 55
OFFSET
0,9
COMMENTS
Array rows are solutions of the recurrence a(n) = (2*k+1)*a(n-1) - A028387(k-1)*a(n-2) where a(0) = 0 and a(1) = 1.
FORMULA
Rows are successive binomial transforms of F(n).
T(n, k) = ( ( (2*n + 1 + sqrt(5))/2 )^k - ( (2*n + 1 - sqrt(5))/2 )^k )/sqrt(5).
From G. C. Greubel, May 26 2021: (Start)
T(n, k) = Sum_{j=0..k} binomial(k,j)*Fibonacci(j)*n^(k-j) with T(0, k) = Fibonacci(k) (square array).
T(n, k) = Sum_{j=0..k} binomial(k,j)*Fibonacci(j)*(n-k)^(k-j) (antidiagonal triangle). (End)
EXAMPLE
Square array begins as:
0, 1, 1, 2, 3, 5, 8, ... A000045;
0, 1, 3, 8, 21, 55, 144, ... A001906;
0, 1, 5, 20, 75, 275, 1000, ... A030191;
0, 1, 7, 38, 189, 905, 4256, ... A099453;
0, 1, 9, 62, 387, 2305, 13392, ... A081574;
0, 1, 11, 92, 693, 4955, 34408, ... A081575;
0, 1, 13, 128, 1131, 9455, 76544, ...
The antidiagonal triangle begins as:
0;
0, 1;
0, 1, 1;
0, 1, 3, 2;
0, 1, 5, 8, 3;
0, 1, 7, 20, 21, 5;
0, 1, 9, 38, 75, 55, 8;
0, 1, 11, 62, 189, 275, 144, 13;
MATHEMATICA
T[n_, k_]:= If[n==0, Fibonacci[k], Sum[Binomial[k, j]*Fibonacci[j]*n^(k-j), {j, 0, k}]]; Table[T[n-k, k], {n, 0, 12}, {k, 0, n}] //Flatten (* G. C. Greubel, May 26 2021 *)
PROG
(Magma)
A081576:= func< n, k | (&+[Binomial(k, j)*Fibonacci(j)*(n-k)^(k-j): j in [0..k]]) >;
[A081576(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 26 2021
(Sage)
def A081576(n, k): return sum( binomial(k, j)*fibonacci(j)*(n-k)^(k-j) for j in (0..k) )
flatten([[A081576(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 26 2021
CROSSREFS
Array row n: A000045 (n=0), A001906 (n=1), A030191 (n=2), A099453 (n=3), A081574 (n=4), A081575 (n=5).
Array columns k: A005408 (k=3), A077588 (k=4).
Sequence in context: A139144 A360866 A373451 * A330785 A292717 A365727
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Mar 22 2003
STATUS
approved