login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081579
Pascal-(1,4,1) array.
12
1, 1, 1, 1, 6, 1, 1, 11, 11, 1, 1, 16, 46, 16, 1, 1, 21, 106, 106, 21, 1, 1, 26, 191, 396, 191, 26, 1, 1, 31, 301, 1011, 1011, 301, 31, 1, 1, 36, 436, 2076, 3606, 2076, 436, 36, 1, 1, 41, 596, 3716, 9726, 9726, 3716, 596, 41, 1, 1, 46, 781, 6056, 21746, 33876, 21746, 6056, 781, 46, 1
OFFSET
0,5
COMMENTS
One of a family of Pascal-like arrays. A007318 is equivalent to the (1,0,1)-array. A008288 is equivalent to the (1,1,1)-array. Rows include A016861, A081587, A081588. Coefficients of the row polynomials in the Newton basis are given by A013612.
LINKS
Vincenzo Librandi, Rows n = 0..100, flattened
Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
FORMULA
Square array T(n, k) defined by T(n, 0) = T(0, k) = 1, T(n, k) = T(n, k-1) + 4*T(n-1, k-1) + T(n-1, k).
Rows are the expansions of (1+4*x)^k/(1-x)^(k+1).
From Philippe Deléham, Mar 15 2014: (Start)
Riordan array (1/(1-x), x*(1+4*x)/(1-x)).
Sum_{k=0..n} T(n, k) = A063727(n). (End)
E.g.f. for the n-th subdiagonal of the triangle, n = 0,1,2,..., equals exp(x)*P(n,x), where P(n,x) is the polynomial Sum_{k = 0..n} binomial(n,k)*(5*x)^k/k!. For example, the e.g.f. for the second subdiagonal is exp(x)*(1 + 10*x + 25*x^2/2) = 1 + 11*x + 46*x^2/2! + 106*x^3/3! + 191*x^4/4! + 301*x^5/5! + .... - Peter Bala, Mar 05 2017
From G. C. Greubel, May 26 2021: (Start)
T(n, k, m) = Hypergeometric2F1([-k, k-n], [1], m+1), for m = 4.
T(n, k, m) = Sum_{j=0..n-k} binomial(k,j)*binomial(n-j,k)*m^j, for m = 4. (End)
EXAMPLE
Square array begins as:
1, 1, 1, 1, 1, ... A000012;
1, 6, 11, 16, 21, ... A016861;
1, 11, 46, 106, 191, ... A081587;
1, 16, 106, 396, 1011, ... A081588;
1, 21, 191, 1011, 3606, ...
As triangle this begins:
1;
1, 1;
1, 6, 1;
1, 11, 11, 1;
1, 16, 46, 16, 1;
1, 21, 106, 106, 21, 1;
1, 26, 191, 396, 191, 26, 1;
1, 31, 301, 1011, 1011, 301, 31, 1;
1, 36, 436, 2076, 3606, 2076, 436, 36, 1;
1, 41, 596, 3716, 9726, 9726, 3716, 596, 41, 1;
1, 46, 781, 6056, 21746, 33876, 21746, 6056, 781, 46, 1; - Philippe Deléham, Mar 15 2014
MATHEMATICA
Table[Hypergeometric2F1[-k, k-n, 1, 5], {n, 0, 12}, {k, 0, n}]//Flatten (* Jean-François Alcover, May 24 2013 *)
PROG
(Magma)
A081579:= func< n, k, q | (&+[Binomial(k, j)*Binomial(n-j, k)*q^j: j in [0..n-k]]) >;
[A081579(n, k, 4): k in [0..n], n in [0..12]]; // G. C. Greubel, May 26 2021
(Sage) flatten([[hypergeometric([-k, k-n], [1], 5).simplify() for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 26 2021
CROSSREFS
Cf. Pascal (1,m,1) array: A123562 (m = -3), A098593 (m = -2), A000012 (m = -1), A007318 (m = 0), A008288 (m = 1), A081577 (m = 2), A081578 (m = 3), A081580 (m = 5), A081581 (m = 6), A081582 (m = 7), A143683 (m = 8).
Sequence in context: A046621 A046617 A131063 * A295707 A146772 A202868
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Mar 23 2003
STATUS
approved