login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A081580 Pascal-(1,5,1) array. 12
1, 1, 1, 1, 7, 1, 1, 13, 13, 1, 1, 19, 61, 19, 1, 1, 25, 145, 145, 25, 1, 1, 31, 265, 595, 265, 31, 1, 1, 37, 421, 1585, 1585, 421, 37, 1, 1, 43, 613, 3331, 6145, 3331, 613, 43, 1, 1, 49, 841, 6049, 17401, 17401, 6049, 841, 49, 1, 1, 55, 1105, 9955, 40105, 65527, 40105, 9955, 1105, 55, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

One of a family of Pascal-like arrays. A007318 is equivalent to the (1,0,1)-array. A008288 is equivalent to the (1,1,1)-array. Rows include A016921, A081589, A081590. Coefficients of the row polynomials in the Newton basis are given by A013613.

LINKS

Vincenzo Librandi, Rows n = 0..100, flattened

Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.

FORMULA

Square array T(n, k) defined by T(n, 0) = T(0, k) = 1, T(n, k) = T(n, k-1) + 5*T(n-1, k-1) + T(n-1, k).

Rows are the expansions of (1+5*x)^k/(1-x)^(k+1).

From Paul Barry, Aug 28 2008: (Start)

Number triangle T(n,k) = Sum_{j=0..n-k} binomial(n-k,j)*binomial(k,j)*5^j.

Riordan array (1/(1-x), x*(1+5*x)/(1-x)). (End)

T(n, k) = Hypergeometric2F1([-k, k-n], [1], 6). - Jean-François Alcover, May 24 2013

E.g.f. for the n-th subdiagonal, n = 0,1,2,..., equals exp(x)*P(n,x), where P(n,x) is the polynomial Sum_{k = 0..n} binomial(n,k)*(6*x)^k/k!. For example, the e.g.f. for the second subdiagonal is exp(x)*(1 + 12*x + 36*x^2/2) = 1 + 13*x + 61*x^2/2! + 145*x^3/3! + 265*x^4/4! + 421*x^5/5! + .... - Peter Bala, Mar 05 2017

Sum_{k=0..n} T(n, k, 3) = A002532(n+1). - G. C. Greubel, May 26 2021

EXAMPLE

Square array begins as:

  1,  1,   1,    1,    1, ... A000012;

  1,  7,  13,   19,   25, ... A016921;

  1, 13,  61,  145,  265, ... A081589;

  1, 19, 145,  595, 1585, ... A081590;

  1, 25, 265, 1585, 6145, ...

The triangle begins as:

  1;

  1,  1;

  1,  7,    1;

  1, 13,   13,    1;

  1, 19,   61,   19,     1;

  1, 25,  145,  145,    25,     1;

  1, 31,  265,  595,   265,    31,     1;

  1, 37,  421, 1585,  1585,   421,    37,    1;

  1, 43,  613, 3331,  6145,  3331,   613,   43,    1;

  1, 49,  841, 6049, 17401, 17401,  6049,  841,   49,  1;

  1, 55, 1105, 9955, 40105, 65527, 40105, 9955, 1105, 55, 1; - Philippe Deléham, Mar 15 2014

MATHEMATICA

Table[Hypergeometric2F1[-k, k-n, 1, 6], {n, 0, 10}, {k, 0, n}]//Flatten (* Jean-François Alcover, May 24 2013 *)

PROG

(MAGMA)

A081580:= func< n, k, q | (&+[Binomial(k, j)*Binomial(n-j, k)*q^j: j in [0..n-k]]) >;

[A081580(n, k, 5): k in [0..n], n in [0..12]]; // G. C. Greubel, May 26 2021

(Sage) flatten([[hypergeometric([-k, k-n], [1], 6).simplify() for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 26 2021

CROSSREFS

Cf. Pascal (1,m,1) array: A123562 (m = -3), A098593 (m = -2), A000012 (m = -1), A007318 (m = 0), A008288 (m = 1), A081577 (m = 2), A081578 (m = 3), A081579 (m = 4), A081581 (m = 6), A081582 (m = 7), A143683 (m = 8).

Cf. A002532, A016921, A081589, A081590.

Sequence in context: A273506 A287326 A131065 * A082110 A275526 A141597

Adjacent sequences:  A081577 A081578 A081579 * A081581 A081582 A081583

KEYWORD

nonn,tabl,easy

AUTHOR

Paul Barry, Mar 23 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 22 14:15 EDT 2021. Contains 345380 sequences. (Running on oeis4.)