login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A287326 Triangle read by rows: T(n, k) = 6*k*(n-k) + 1; n >= 0, 0 <= k <= n. 17
1, 1, 1, 1, 7, 1, 1, 13, 13, 1, 1, 19, 25, 19, 1, 1, 25, 37, 37, 25, 1, 1, 31, 49, 55, 49, 31, 1, 1, 37, 61, 73, 73, 61, 37, 1, 1, 43, 73, 91, 97, 91, 73, 43, 1, 1, 49, 85, 109, 121, 121, 109, 85, 49, 1, 1, 55, 97, 127, 145, 151, 145, 127, 97, 55, 1, 1, 61, 109, 145, 169, 181, 181, 169, 145, 109, 61, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

The triangle is symmetric: T(n, k) = T(n-k, k).

Conjecture: Partial sum of every k-th column gives [8+6*(k-1)]-gonal numbers. - Kolosov Petro, Jun 03 2019

LINKS

Kolosov Petro, Rows n = 0..30, flattened

Kolosov Petro, Another Power Identity involving Binomial Theorem and Faulhaber's formula, arXiv:1603.02468 [math.NT], 2016-2018.

FORMULA

T(n, k) = 6*k*(n-k) + 1.

G.f. of column k: n^k*(1+(6*k-1)*n)/(1-n)^2.

G.f.: (-1 + 8*y + 5*y^2 + x*(1 - 14*y + y^2))/((-1 + x)^2*(-1 + y)^3). - Stefano Spezia, Oct 09 2018

From Kolosov Petro, Jun 05 2019 (Start):

T(n, k) = 1/2 * T(A294317(n, k), k) + 1/2.

T(n+1, k) = 2*T(n, k) - T(n-1, k), n >= k.

T(n, k) = 6*A077028(n,k) - 5.

T(2n, n) = A227776(n).

T(2n+1, n) = A003154(n+1).

T(2n+3, n) = A166873(n+1).

Sum_{k=0..n-1} T(n,k) = Sum_{k=1..n} T(n,k) = A000578(n).

Sum_{k=1..n-1} T(n,k) = A068601(n).

(n+1)^3 - n^3 = T(A000124(n), 1). (End)

EXAMPLE

Triangle begins:

----------------------------------------

k=    0   1   2   3   4   5   6   7   8

----------------------------------------

n=0:  1;

n=1:  1,  1;

n=2:  1,  7,  1;

n=3:  1, 13, 13,  1;

n=4:  1, 19, 25, 19,  1;

n=5:  1, 25, 37, 37, 25,  1;

n=6:  1, 31, 49, 55, 49, 31,  1;

n=7:  1, 37, 61, 73, 73, 61, 37,  1;

n=8:  1, 43, 73, 91, 97, 91, 73, 43,  1;

MAPLE

T := (n, k) -> 6*k*(n-k) + 1:

seq(seq(T(n, k), k=0..n), n=0..11); # Muniru A Asiru, Oct 09 2018

MATHEMATICA

T[n_, k_] := 6 k (n - k) + 1; Column[Table[T[n, k], {n, 0, 10}, {k, 0, n}], Center] (* Kolosov Petro, Jun 02 2019 *)

PROG

(PARI) t(n, k) = 6*k*(n-k)+1

trianglerows(n) = for(x=0, n-1, for(y=0, x, print1(t(x, y), ", ")); print(""))

/* Print initial 9 rows of triangle as follows */

trianglerows(9) \\ Felix Fröhlich, Jan 09 2018

(GAP) Flat(List([0..11], n->List([0..n], k->6*k*(n-k)+1))); # Muniru A Asiru, Oct 09 2018

(MAGMA) /* As triangle */ [[6*k*(n-k) + 1: k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Oct 26 2018

CROSSREFS

Columns k=0..6 give A000012, A016921, A017533, A161705, A103214, A128470, A158065.

Column sums k=0..4 give A000027, A000567, A051866, A051872, A255185.

Row sums give A001093.

Differences of cubes n^3 are T(A000124(n), 1).

Cf. A000578, A038593, A294317, A007318, A055012, A077028, A008458, A302971, A304042, A068601, A166873, A003154, A227776, A000124, A003215.

Sequence in context: A183352 A217510 A273506 * A131065 A081580 A082110

Adjacent sequences:  A287323 A287324 A287325 * A287327 A287328 A287329

KEYWORD

nonn,tabl,easy

AUTHOR

Kolosov Petro, Aug 31 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 18 10:27 EDT 2019. Contains 328147 sequences. (Running on oeis4.)