The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A287326 Triangle read by rows: T(n, k) = 6*k*(n-k) + 1; n >= 0, 0 <= k <= n. 15
 1, 1, 1, 1, 7, 1, 1, 13, 13, 1, 1, 19, 25, 19, 1, 1, 25, 37, 37, 25, 1, 1, 31, 49, 55, 49, 31, 1, 1, 37, 61, 73, 73, 61, 37, 1, 1, 43, 73, 91, 97, 91, 73, 43, 1, 1, 49, 85, 109, 121, 121, 109, 85, 49, 1, 1, 55, 97, 127, 145, 151, 145, 127, 97, 55, 1, 1, 61, 109, 145, 169, 181, 181, 169, 145, 109, 61, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS From Kolosov Petro, Apr 12 2020: (Start) Let be A(m, r) = A302971(m, r) / A304042(m, r). Let be L(m, n, k) = Sum_{r=0..m} A(m, r) * k^r * (n - k)^r. Then T(n, k) = L(1, n, k), i.e T(n, k) is partial case of L(m, n, k) for m = 1. T(n, k) is symmetric: T(n, k) = T(n, n-k). (End) LINKS Georg Fischer, Table of n, a(n) for n = 0..495 [rows 0..10 and 12..30 from Kolosov Petro] Kolosov Petro, On the link between Binomial Theorem and Discrete Convolution of Power Function, arXiv:1603.02468 [math.NT], 2016-2020. FORMULA T(n, k) = 6*k*(n-k) + 1. G.f. of column k: n^k*(1+(6*k-1)*n)/(1-n)^2. G.f.: (-1 + 8*y + 5*y^2 + x*(1 - 14*y + y^2))/((-1 + x)^2*(-1 + y)^3). - Stefano Spezia, Oct 09 2018 From Kolosov Petro, Jun 05 2019 (Start): T(n, k) = 1/2 * T(A294317(n, k), k) + 1/2. T(n+1, k) = 2*T(n, k) - T(n-1, k), for n >= k. T(n, k) = 6*A077028(n, k) - 5. T(2n, n) = A227776(n). T(2n+1, n) = A003154(n+1). T(2n+3, n) = A166873(n+1). Sum_{k=0..n-1} T(n, k) = Sum_{k=1..n} T(n, k) = A000578(n). Sum_{k=1..n-1} T(n, k) = A068601(n). (n+1)^3 - n^3 = T(A000124(n), 1). (End) EXAMPLE Triangle begins: ---------------------------------------- k=    0   1   2   3   4   5   6   7   8 ---------------------------------------- n=0:  1; n=1:  1,  1; n=2:  1,  7,  1; n=3:  1, 13, 13,  1; n=4:  1, 19, 25, 19,  1; n=5:  1, 25, 37, 37, 25,  1; n=6:  1, 31, 49, 55, 49, 31,  1; n=7:  1, 37, 61, 73, 73, 61, 37,  1; n=8:  1, 43, 73, 91, 97, 91, 73, 43,  1; MAPLE T := (n, k) -> 6*k*(n-k) + 1: seq(seq(T(n, k), k=0..n), n=0..11); # Muniru A Asiru, Oct 09 2018 MATHEMATICA T[n_, k_] := 6 k (n - k) + 1; Column[Table[T[n, k], {n, 0, 10}, {k, 0, n}], Center] (* Kolosov Petro, Jun 02 2019 *) PROG (PARI) t(n, k) = 6*k*(n-k)+1 trianglerows(n) = for(x=0, n-1, for(y=0, x, print1(t(x, y), ", ")); print("")) /* Print initial 9 rows of triangle as follows */ trianglerows(9) \\ Felix FrÃ¶hlich, Jan 09 2018 (GAP) Flat(List([0..11], n->List([0..n], k->6*k*(n-k)+1))); # Muniru A Asiru, Oct 09 2018 (MAGMA) /* As triangle */ [[6*k*(n-k) + 1: k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Oct 26 2018 CROSSREFS Columns k=0..6 give A000012, A016921, A017533, A161705, A103214, A128470, A158065. Column sums k=0..4 give A000027, A000567, A051866, A051872, A255185. Row sums give A001093. Various cases of L(m, n, k): This sequence (m=1), A300656(m=2), A300785(m=3). See comments for L(m, n, k). Differences of cubes n^3 are T(A000124(n), 1). Cf. A000578, A038593, A294317, A007318, A055012, A077028, A008458, A302971, A304042, A068601, A166873, A003154, A227776, A000124, A003215, A094053. Sequence in context: A183352 A217510 A273506 * A131065 A081580 A082110 Adjacent sequences:  A287323 A287324 A287325 * A287327 A287328 A287329 KEYWORD nonn,tabl,easy AUTHOR Kolosov Petro, Aug 31 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 17 17:33 EDT 2021. Contains 345085 sequences. (Running on oeis4.)