login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A302971 Triangle read by rows: T(n,k) is the numerator of R(n,k) defined implicitly by the identity Sum_{i=0..l-1} Sum_{j=0..m} R(m,j)*(l-i)^j*i^j = l^(2*m+1) holding for all l,m >= 0. 9
1, 1, 6, 1, 0, 30, 1, -14, 0, 140, 1, -120, 0, 0, 630, 1, -1386, 660, 0, 0, 2772, 1, -21840, 18018, 0, 0, 0, 12012, 1, -450054, 491400, -60060, 0, 0, 0, 51480, 1, -11880960, 15506040, -3712800, 0, 0, 0, 0, 218790, 1, -394788954, 581981400, -196409840, 8817900, 0, 0, 0, 0, 923780, 1, -16172552880, 26003271294, -10863652800, 1031151660, 0, 0, 0, 0, 0, 3879876 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,3
LINKS
P.-Y. Huang, S.-C. Liu, and Y.-N. Yeh, Congruences of Finite Summations of the Coefficients in certain Generating Functions, The Electronic Journal of Combinatorics, 21 (2014), #P2.45.
C. Jordan, Calculus of Finite Differences, Röttig and Romwalter, Budapest, 1939. [Annotated scans of pages 448-450 only]
Petro Kolosov, On the link between Binomial Theorem and Discrete Convolution of Power Function, arXiv:1603.02468 [math.NT], 2016-2020.
Petro Kolosov, An unusual identity for odd-powers, arXiv:2101.00227 [math.GM], 2021.
FORMULA
Recurrence given by Max Alekseyev (see the MathOverflow link):
R(n, k) = 0 if k < 0 or k > n.
R(n, k) = (2k+1)*binomial(2k, k) if k = n.
R(n, k) = (2k+1)*binomial(2k, k)*Sum_{j=2k+1..n} R(n, j)*binomial(j, 2k+1)*(-1)^(j-1)/(j-k)*Bernoulli(2j-2k), otherwise.
T(n, k) = numerator(R(n, k)).
EXAMPLE
Triangle begins:
------------------------------------------------------------------------
k= 0 1 2 3 4 5 6 7 8
------------------------------------------------------------------------
n=0: 1;
n=1: 1, 6;
n=2: 1, 0, 30;
n=3: 1, -14, 0, 140;
n=4: 1, -120, 0, 0, 630;
n=5: 1, -1386, 660, 0, 0, 2772;
n=6: 1, -21840, 18018, 0, 0, 0, 12012;
n=7: 1, -450054, 491400, -60060, 0, 0, 0, 51480;
n=8: 1, -11880960, 15506040, -3712800, 0, 0, 0, 0, 218790;
MAPLE
R := proc(n, k) if k < 0 or k > n then return 0 fi; (2*k+1)*binomial(2*k, k);
if n = k then % else -%*add((-1)^j*R(n, j)*binomial(j, 2*k+1)*
bernoulli(2*j-2*k)/(j-k), j=2*k+1..n) fi end: T := (n, k) -> numer(R(n, k)):
seq(print(seq(T(n, k), k=0..n)), n=0..12);
# Numerical check that S(m, n) = n^(2*m+1):
S := (m, n) -> add(add(R(m, j)*(n-k)^j*k^j, j=0..m), k=0..n-1):
seq(seq(S(m, n) - n^(2*m+1), n=0..12), m=0..12); # Peter Luschny, Apr 30 2018
MATHEMATICA
R[n_, k_] := 0
R[n_, k_] := (2 k + 1)*Binomial[2 k, k]*
Sum[R[n, j]*Binomial[j, 2 k + 1]*(-1)^(j - 1)/(j - k)*
BernoulliB[2 j - 2 k], {j, 2 k + 1, n}] /; 2 k + 1 <= n
R[n_, k_] := (2 n + 1)*Binomial[2 n, n] /; k == n;
T[n_, k_] := Numerator[R[n, k]];
(* Print Fifteen Initial rows of Triangle A302971 *)
Column[ Table[ T[n, k], {n, 0, 15}, {k, 0, n}], Center]
PROG
(PARI) T(n, k) = if ((n>k) || (n<0), 0, if (k==n, (2*n+1)*binomial(2*n, n), if (2*n+1>k, 0, if (n==0, 1, (2*n+1)*binomial(2*n, n)*sum(j=2*n+1, k+1, T(j, k)*binomial(j, 2*n+1)*(-1)^(j-1)/(j-n)*bernfrac(2*j-2*n))))));
tabl(nn) = for (n=0, nn, for (k=0, n, print1(numerator(T(k, n)), ", ")); print); \\ Michel Marcus, Apr 27 2018
CROSSREFS
Items of second row are the coefficients in the definition of A287326.
Items of third row are the coefficients in the definition of A300656.
Items of fourth row are the coefficients in the definition of A300785.
T(n,n) gives A002457(n).
Denominators of R(n,k) are shown in A304042.
Row sums return A000079(2n+1) - 1.
Sequence in context: A127573 A351110 A137388 * A114153 A119832 A166141
KEYWORD
sign,tabl,easy,frac
AUTHOR
Kolosov Petro, Apr 16 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 19 10:38 EDT 2024. Contains 371791 sequences. (Running on oeis4.)