login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A302971
Triangle read by rows: T(n,k) is the numerator of R(n,k) defined implicitly by the identity Sum_{i=0..l-1} Sum_{j=0..m} R(m,j)*(l-i)^j*i^j = l^(2*m+1) holding for all l,m >= 0.
9
1, 1, 6, 1, 0, 30, 1, -14, 0, 140, 1, -120, 0, 0, 630, 1, -1386, 660, 0, 0, 2772, 1, -21840, 18018, 0, 0, 0, 12012, 1, -450054, 491400, -60060, 0, 0, 0, 51480, 1, -11880960, 15506040, -3712800, 0, 0, 0, 0, 218790, 1, -394788954, 581981400, -196409840, 8817900, 0, 0, 0, 0, 923780, 1, -16172552880, 26003271294, -10863652800, 1031151660, 0, 0, 0, 0, 0, 3879876
OFFSET
0,3
LINKS
P.-Y. Huang, S.-C. Liu, and Y.-N. Yeh, Congruences of Finite Summations of the Coefficients in certain Generating Functions, The Electronic Journal of Combinatorics, 21 (2014), #P2.45.
C. Jordan, Calculus of Finite Differences, Röttig and Romwalter, Budapest, 1939. [Annotated scans of pages 448-450 only]
Petro Kolosov, On the link between Binomial Theorem and Discrete Convolution of Power Function, arXiv:1603.02468 [math.NT], 2016-2020.
Petro Kolosov, An unusual identity for odd-powers, arXiv:2101.00227 [math.GM], 2021.
Petro Kolosov, A novel proof of power rule in calculus, GitHub, 2024. See p. 5.
Petro Kolosov, Odd-power identity via multiplication of certain matrices, GitHub, 2024. See p. 4.
FORMULA
Recurrence given by Max Alekseyev (see the MathOverflow link):
R(n, k) = 0 if k < 0 or k > n.
R(n, k) = (2k+1)*binomial(2k, k) if k = n.
R(n, k) = (2k+1)*binomial(2k, k)*Sum_{j=2k+1..n} R(n, j)*binomial(j, 2k+1)*(-1)^(j-1)/(j-k)*Bernoulli(2j-2k), otherwise.
T(n, k) = numerator(R(n, k)).
EXAMPLE
Triangle begins:
------------------------------------------------------------------------
k= 0 1 2 3 4 5 6 7 8
------------------------------------------------------------------------
n=0: 1;
n=1: 1, 6;
n=2: 1, 0, 30;
n=3: 1, -14, 0, 140;
n=4: 1, -120, 0, 0, 630;
n=5: 1, -1386, 660, 0, 0, 2772;
n=6: 1, -21840, 18018, 0, 0, 0, 12012;
n=7: 1, -450054, 491400, -60060, 0, 0, 0, 51480;
n=8: 1, -11880960, 15506040, -3712800, 0, 0, 0, 0, 218790;
MAPLE
R := proc(n, k) if k < 0 or k > n then return 0 fi; (2*k+1)*binomial(2*k, k);
if n = k then % else -%*add((-1)^j*R(n, j)*binomial(j, 2*k+1)*
bernoulli(2*j-2*k)/(j-k), j=2*k+1..n) fi end: T := (n, k) -> numer(R(n, k)):
seq(print(seq(T(n, k), k=0..n)), n=0..12);
# Numerical check that S(m, n) = n^(2*m+1):
S := (m, n) -> add(add(R(m, j)*(n-k)^j*k^j, j=0..m), k=0..n-1):
seq(seq(S(m, n) - n^(2*m+1), n=0..12), m=0..12); # Peter Luschny, Apr 30 2018
MATHEMATICA
R[n_, k_] := 0
R[n_, k_] := (2 k + 1)*Binomial[2 k, k]*
Sum[R[n, j]*Binomial[j, 2 k + 1]*(-1)^(j - 1)/(j - k)*
BernoulliB[2 j - 2 k], {j, 2 k + 1, n}] /; 2 k + 1 <= n
R[n_, k_] := (2 n + 1)*Binomial[2 n, n] /; k == n;
T[n_, k_] := Numerator[R[n, k]];
(* Print Fifteen Initial rows of Triangle A302971 *)
Column[ Table[ T[n, k], {n, 0, 15}, {k, 0, n}], Center]
PROG
(PARI) T(n, k) = if ((n>k) || (n<0), 0, if (k==n, (2*n+1)*binomial(2*n, n), if (2*n+1>k, 0, if (n==0, 1, (2*n+1)*binomial(2*n, n)*sum(j=2*n+1, k+1, T(j, k)*binomial(j, 2*n+1)*(-1)^(j-1)/(j-n)*bernfrac(2*j-2*n))))));
tabl(nn) = for (n=0, nn, for (k=0, n, print1(numerator(T(k, n)), ", ")); print); \\ Michel Marcus, Apr 27 2018
CROSSREFS
Items of second row are the coefficients in the definition of A287326.
Items of third row are the coefficients in the definition of A300656.
Items of fourth row are the coefficients in the definition of A300785.
T(n,n) gives A002457(n).
Denominators of R(n,k) are shown in A304042.
Row sums return A000079(2n+1) - 1.
Sequence in context: A127573 A351110 A137388 * A114153 A119832 A166141
KEYWORD
sign,tabl,easy,frac,changed
AUTHOR
Kolosov Petro, Apr 16 2018
STATUS
approved