login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A302971 Triangle read by rows: T(n,k) is the numerator of R(n,k) defined implicitly by the identity Sum_{i=0..l-1} Sum_{j=0..m} R(m,j)*(l-i)^j*i^j = l^(2*m+1) holding for all l,m >= 0. 9
1, 1, 6, 1, 0, 30, 1, -14, 0, 140, 1, -120, 0, 0, 630, 1, -1386, 660, 0, 0, 2772, 1, -21840, 18018, 0, 0, 0, 12012, 1, -450054, 491400, -60060, 0, 0, 0, 51480, 1, -11880960, 15506040, -3712800, 0, 0, 0, 0, 218790, 1, -394788954, 581981400, -196409840, 8817900, 0, 0, 0, 0, 923780, 1, -16172552880, 26003271294, -10863652800, 1031151660, 0, 0, 0, 0, 0, 3879876 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..65.

P.-Y. Huang, S.-C. Liu, Y.-N. Yeh, Congruences of Finite Summations of the Coefficients in certain Generating Functions, The Electronic Journal of Combinatorics, 21 (2014), #P2.45.

C. Jordan, Calculus of Finite Differences, Budapest, 1939. [Annotated scans of pages 448-450 only]

Petro Kolosov, Another Power Identity involving Binomial Theorem and Faulhaber's formula, arXiv:1603.02468 [math.NT], 2016-2018.

Petro Kolosov, Definition and table of values.

MathOverflow, Discussion of these coefficients, 2018.

FORMULA

Recurrence given by Max Alekseyev (see the MathOverflow link):

R(n, k) = 0 if k < 0 or k > n.

R(n, k) = (2k+1)*binomial(2k, k) if k = n.

R(n, k) = (2k+1)*binomial(2k, k)*Sum_{j=2k+1..n} R(n, j)*binomial(j, 2k+1)*(-1)^(j-1)/(j-k)*Bernoulli(2j-2k), otherwise.

T(n, k) = numerator(R(n, k)).

EXAMPLE

Triangle begins:

------------------------------------------------------------------------

k=   0          1         2         3    4     5      6      7       8

------------------------------------------------------------------------

n=0: 1;

n=1: 1,         6;

n=2: 1,         0,       30;

n=3: 1,       -14,        0,      140;

n=4: 1,      -120,        0,        0, 630;

n=5: 1,     -1386,      660,        0,   0, 2772;

n=6: 1,    -21840,    18018,        0,   0,    0, 12012;

n=7: 1,   -450054,   491400,   -60060,   0,    0,     0, 51480;

n=8: 1, -11880960, 15506040, -3712800,   0,    0,     0,     0, 218790;

MAPLE

R := proc(n, k) if k < 0 or k > n then return 0 fi; (2*k+1)*binomial(2*k, k);

if n = k then % else -%*add((-1)^j*R(n, j)*binomial(j, 2*k+1)*

bernoulli(2*j-2*k)/(j-k), j=2*k+1..n) fi end: T := (n, k) -> numer(R(n, k)):

seq(print(seq(T(n, k), k=0..n)), n=0..12);

# Numerical check that S(m, n) = n^(2*m+1):

S := (m, n) -> add(add(R(m, j)*(n-k)^j*k^j, j=0..m), k=0..n-1):

seq(seq(S(m, n) - n^(2*m+1), n=0..12), m=0..12); # Peter Luschny, Apr 30 2018

MATHEMATICA

R[n_, k_] := 0

R[n_, k_] := (2 k + 1)*Binomial[2 k, k]*

   Sum[R[n, j]*Binomial[j, 2 k + 1]*(-1)^(j - 1)/(j - k)*

   BernoulliB[2 j - 2 k], {j, 2 k + 1, n}] /; 2 k + 1 <= n

R[n_, k_] := (2 n + 1)*Binomial[2 n, n] /; k == n;

T[n_, k_] := Numerator[R[n, k]];

(* Print Fifteen Initial rows of Triangle A302971 *)

Column[ Table[ T[n, k], {n, 0, 15}, {k, 0, n}], Center]

PROG

(PARI) T(n, k) = if ((n>k) || (n<0), 0, if (k==n, (2*n+1)*binomial(2*n, n), if (2*n+1>k, 0, if (n==0, 1, (2*n+1)*binomial(2*n, n)*sum(j=2*n+1, k+1, T(j, k)*binomial(j, 2*n+1)*(-1)^(j-1)/(j-n)*bernfrac(2*j-2*n))))));

tabl(nn) = for (n=0, nn, for (k=0, n, print1(numerator(T(k, n)), ", ")); print); \\ Michel Marcus, Apr 27 2018

CROSSREFS

Items of second row are the coefficients in the definition of A287326.

Items of third row are the coefficients in the definition of A300656.

Items of fourth row are the coefficients in the definition of A300785.

T(n,n) gives A002457(n).

Denominators of R(n,k) are shown in A304042.

Row sums return A000079(2n+1) - 1.

Cf. A007318, A027641, A027642, A055012, A077028, A000146, A002882, A003245, A127187, A127188, A074909, A164555.

Sequence in context: A204013 A127573 A137388 * A114153 A119832 A166141

Adjacent sequences:  A302968 A302969 A302970 * A302972 A302973 A302974

KEYWORD

sign,tabl,easy,frac

AUTHOR

Kolosov Petro, Apr 16 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 18 14:46 EDT 2019. Contains 322209 sequences. (Running on oeis4.)