login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A304042
Triangle read by rows: T(n,k) is the denominator of R(n,k) defined implicitly by the identity Sum_{i=0..l-1} Sum_{j=0..m} R(m,j)*(l-i)^j*i^j = l^(2*m+1) holding for all l,m >= 0.
9
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1
OFFSET
0,68
LINKS
P.-Y. Huang, S.-C. Liu, and Y.-N. Yeh, Congruences of Finite Summations of the Coefficients in certain Generating Functions, The Electronic Journal of Combinatorics, 21 (2014), #P2.45.
C. Jordan, Calculus of Finite Differences, Budapest, 1939. [Annotated scans of pages 448-450 only]
Petro Kolosov, On the link between binomial theorem and discrete convolution, arXiv:1603.02468 [math.NT], 2016-2025.
Petro Kolosov, An unusual identity for odd-powers, arXiv:2101.00227 [math.GM], 2021.
Petro Kolosov, A novel proof of power rule in calculus, GitHub, 2024. See p. 5.
Petro Kolosov, Odd-power identity via multiplication of certain matrices, GitHub, 2024. See p. 4.
FORMULA
Recurrence given by Max Alekseyev (see the MathOverflow link):
R(n, k) = 0 if k < 0 or k > n.
R(n, k) = (2k+1)*binomial(2k, k) if k = n.
R(n, k) = (2k+1)*binomial(2k, k)*Sum_{j=2k+1..n} R(n, j)*binomial(j, 2k+1)*(-1)^(j-1)/(j-k)*Bernoulli(2j-2k), otherwise.
T(n, k) = denominator(R(n, k)).
EXAMPLE
Triangle begins:
-----------------------------------------------------
k= 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
-----------------------------------------------------
n=0: 1;
n=1: 1, 1;
n=2: 1, 1, 1;
n=3: 1, 1, 1, 1;
n=4: 1, 1, 1, 1, 1;
n=5: 1, 1, 1, 1, 1, 1;
n=6: 1, 1, 1, 1, 1, 1, 1;
n=7: 1, 1, 1, 1, 1, 1, 1, 1;
n=8: 1, 1, 1, 1, 1, 1, 1, 1, 1;
n=9: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
n=10: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
n=11: 1, 5, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1;
n=12: 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1;
n=13: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
n=14: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
n=15: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
MATHEMATICA
R[n_, k_] := 0
R[n_, k_] := (2 k + 1)*Binomial[2 k, k]*
Sum[R[n, j]*Binomial[j, 2 k + 1]*(-1)^(j - 1)/(j - k)*
BernoulliB[2 j - 2 k], {j, 2 k + 1, n}] /; 2 k + 1 <= n
R[n_, k_] := (2 n + 1)*Binomial[2 n, n] /; k == n;
T[n_, k_] := Denominator[R[n, k]];
(* Print Fifteen Initial rows of Triangle A304042 *)
Column[ Table[ T[n, k], {n, 0, 15}, {k, 0, n}], Center]
PROG
(PARI)
up_to = 1274; \\ = binomial(50+1, 2)-1
A304042aux(n, k) = if((k<0)||(k>n), 0, (k+k+1)*binomial(2*k, k)*if(k==n, 1, sum(j=k+k+1, n, A304042aux(n, j)*binomial(j, k+k+1)*((-1)^(j-1))/(j-k)*bernfrac(2*(j-k)))));
A304042tr(n, k) = denominator(A304042aux(n, k));
A304042list(up_to) = { my(v = vector(up_to), i=0); for(n=0, oo, for(k=0, n, if(i++ > up_to, return(v)); v[i] = A304042tr(n, k))); (v); };
v304042 = A304042list(1+up_to);
A304042(n) = v304042[1+n]; \\ Antti Karttunen, Nov 07 2018
KEYWORD
nonn,tabl,frac,changed
AUTHOR
Kolosov Petro, May 05 2018
STATUS
approved