login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A109768
a(n) = gcd(3^n-2,2^n-3).
3
1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 5
OFFSET
1,3
COMMENTS
The first time the inequality a(n) > 5 occurs for n = A196628(2) = 3783 with a(3783) = 26665 = 5*5333 = A196627(1)*A196627(2). - Max Alekseyev, Oct 04 2011
LINKS
Suggested by Max Alekseyev in a Seqfan memo Aug 09 2005.
Anatoly S. Izotov, On prime divisors of GCD(3^n-2,2^n-3), Fibonacci Quarterly 43, May 2005, pp. 130-131.
MATHEMATICA
Table[GCD[3^n - 2, 2^n - 3], {n, 120}] (* Michael De Vlieger, Mar 10 2016 *)
PROG
(PARI) a(n) = gcd(3^n-2, 2^n-3); \\ Michel Marcus, Mar 10 2016
CROSSREFS
Sequence in context: A348505 A051008 A304042 * A069293 A347398 A333751
KEYWORD
nonn,changed
AUTHOR
John W. Layman, Aug 13 2005
STATUS
approved